Matemática, perguntado por rodrigocnc25, 1 ano atrás

Texto base:
Dado o plano:
α : 3x - 4y - 2z = 5 =0
Escreva uma equação geral do plano β, tal que, passa pelo ponto B (2, 1, 3) e é paralelo ao plano α. Assinale a alternativa correta:
Selecione uma alternativa:
a)β : 3x - 4y - 2z + 4 = 0
b)β : x - y - 2z + 3 = 0
c)β : 2x - 2y - 2z + 4 = 0
d)β : x - y - 2z + 1 = 0
e)β : 3x - 3y - 3z + 4 = 0

Soluções para a tarefa

Respondido por Usuário anônimo
9
ax+by+cy+D=0  , vetor normal =(a,b,c)


α : 3x - 4y - 2z = 5 =0 , vetor normal ao plano  α ==>(3,-4,-2)

os planos são paralelos, então o vetor normal ao
plano β é o mesmo  que o do plano α

β:3x - 4y - 2z +D=0  

temos um ponto deste plano >>> 
B (2, 1, 3)

3*2 -4*1-2*3 +D=0

6-4-6 +D=0

D=4 


β: 3x - 4y - 2z +4=0    

Resposta:  
a)  β : 3x - 4y - 2z + 4 = 0
Perguntas interessantes