Anexos:
![](https://pt-static.z-dn.net/files/d30/03d3c4a59941d014806cead8c139fd6c.png)
Soluções para a tarefa
Respondido por
4
Notando que
é uma função diferenciável, pois é o produto de duas funções diferenciáveis (
é um polinômio e
é a função exponencial, que é diferenciável), podemos usar a seguinte formulação para a derivada direcional:
![D_{\mathbf{v}}f(x,y)=\nabla f(x,y)\cdot\mathbf{v} D_{\mathbf{v}}f(x,y)=\nabla f(x,y)\cdot\mathbf{v}](https://tex.z-dn.net/?f=D_%7B%5Cmathbf%7Bv%7D%7Df%28x%2Cy%29%3D%5Cnabla+f%28x%2Cy%29%5Ccdot%5Cmathbf%7Bv%7D)
Onde
é o vetor unitário na direção que queremos calcular a derivada direcional.
Achando o gradiente de
:
![\nabla f(x,y)=\bigg(\dfrac{\partial f}{\partial x},~\dfrac{\partial f}{\partial y}\bigg)=\bigg(\dfrac{\partial}{\partial x}(ye^{-xy}),~\dfrac{\partial}{\partial y}(ye^{-xy})\bigg)\\\\\\\nabla f(x,y)=(-y^{2}e^{-xy},e^{-xy}-xye^{-xy}) \nabla f(x,y)=\bigg(\dfrac{\partial f}{\partial x},~\dfrac{\partial f}{\partial y}\bigg)=\bigg(\dfrac{\partial}{\partial x}(ye^{-xy}),~\dfrac{\partial}{\partial y}(ye^{-xy})\bigg)\\\\\\\nabla f(x,y)=(-y^{2}e^{-xy},e^{-xy}-xye^{-xy})](https://tex.z-dn.net/?f=%5Cnabla+f%28x%2Cy%29%3D%5Cbigg%28%5Cdfrac%7B%5Cpartial+f%7D%7B%5Cpartial+x%7D%2C%7E%5Cdfrac%7B%5Cpartial+f%7D%7B%5Cpartial+y%7D%5Cbigg%29%3D%5Cbigg%28%5Cdfrac%7B%5Cpartial%7D%7B%5Cpartial+x%7D%28ye%5E%7B-xy%7D%29%2C%7E%5Cdfrac%7B%5Cpartial%7D%7B%5Cpartial+y%7D%28ye%5E%7B-xy%7D%29%5Cbigg%29%5C%5C%5C%5C%5C%5C%5Cnabla+f%28x%2Cy%29%3D%28-y%5E%7B2%7De%5E%7B-xy%7D%2Ce%5E%7B-xy%7D-xye%5E%7B-xy%7D%29)
Avaliando o gradiente em
:
![\nabla f(0,2)=(-2^{2}e^{0},~e^{0}-0)=(-4,1) \nabla f(0,2)=(-2^{2}e^{0},~e^{0}-0)=(-4,1)](https://tex.z-dn.net/?f=%5Cnabla+f%280%2C2%29%3D%28-2%5E%7B2%7De%5E%7B0%7D%2C%7Ee%5E%7B0%7D-0%29%3D%28-4%2C1%29)
Então, devemos encontrar
tal que
e
(pois
deve ser unitário)
Desenvolvendo a primeira expressão, sendo
:
![D_{\mathbf{v}}f(0,2)=\nabla f(0,2)\cdot\mathbf{v}=1~~~\Leftrightarrow\\\\(-4,1)\cdot(x,y)=1~~~\Leftrightarrow\\\\-4x+y=1~~~\Leftrightarrow\\\\y=1+4x D_{\mathbf{v}}f(0,2)=\nabla f(0,2)\cdot\mathbf{v}=1~~~\Leftrightarrow\\\\(-4,1)\cdot(x,y)=1~~~\Leftrightarrow\\\\-4x+y=1~~~\Leftrightarrow\\\\y=1+4x](https://tex.z-dn.net/?f=D_%7B%5Cmathbf%7Bv%7D%7Df%280%2C2%29%3D%5Cnabla+f%280%2C2%29%5Ccdot%5Cmathbf%7Bv%7D%3D1%7E%7E%7E%5CLeftrightarrow%5C%5C%5C%5C%28-4%2C1%29%5Ccdot%28x%2Cy%29%3D1%7E%7E%7E%5CLeftrightarrow%5C%5C%5C%5C-4x%2By%3D1%7E%7E%7E%5CLeftrightarrow%5C%5C%5C%5Cy%3D1%2B4x)
Então, temos
. Agora, de
:
![||\mathbf{v}||=1~~~\Leftrightarrow\\\\||\mathbf{v}||^{2}=1~~~\Leftrightarrow\\\\x^{2}+(1+4x)^{2}=1\\\\x^{2}+(1^{2}+8x+16x^{2})=1\\\\17x^{2}+8x=0\\\\x\cdot(17x+8)=0~\begin{cases}x=0\\\\17x+8=0~~~\Leftrightarrow~~~x=-\dfrac{8}{17}\end{cases} ||\mathbf{v}||=1~~~\Leftrightarrow\\\\||\mathbf{v}||^{2}=1~~~\Leftrightarrow\\\\x^{2}+(1+4x)^{2}=1\\\\x^{2}+(1^{2}+8x+16x^{2})=1\\\\17x^{2}+8x=0\\\\x\cdot(17x+8)=0~\begin{cases}x=0\\\\17x+8=0~~~\Leftrightarrow~~~x=-\dfrac{8}{17}\end{cases}](https://tex.z-dn.net/?f=%7C%7C%5Cmathbf%7Bv%7D%7C%7C%3D1%7E%7E%7E%5CLeftrightarrow%5C%5C%5C%5C%7C%7C%5Cmathbf%7Bv%7D%7C%7C%5E%7B2%7D%3D1%7E%7E%7E%5CLeftrightarrow%5C%5C%5C%5Cx%5E%7B2%7D%2B%281%2B4x%29%5E%7B2%7D%3D1%5C%5C%5C%5Cx%5E%7B2%7D%2B%281%5E%7B2%7D%2B8x%2B16x%5E%7B2%7D%29%3D1%5C%5C%5C%5C17x%5E%7B2%7D%2B8x%3D0%5C%5C%5C%5Cx%5Ccdot%2817x%2B8%29%3D0%7E%5Cbegin%7Bcases%7Dx%3D0%5C%5C%5C%5C17x%2B8%3D0%7E%7E%7E%5CLeftrightarrow%7E%7E%7Ex%3D-%5Cdfrac%7B8%7D%7B17%7D%5Cend%7Bcases%7D)
Então, temos 2 vetores que satisfazem
e
:
![\mathbf{v_{0}}=(0,1+4\cdot0)=(0,1)\\\\\mathbf{v_{1}}=(-\frac{8}{17},~1+4\cdot(-\frac{8}{17}))=(-\frac{8}{17},-\frac{15}{17}) \mathbf{v_{0}}=(0,1+4\cdot0)=(0,1)\\\\\mathbf{v_{1}}=(-\frac{8}{17},~1+4\cdot(-\frac{8}{17}))=(-\frac{8}{17},-\frac{15}{17})](https://tex.z-dn.net/?f=%5Cmathbf%7Bv_%7B0%7D%7D%3D%280%2C1%2B4%5Ccdot0%29%3D%280%2C1%29%5C%5C%5C%5C%5Cmathbf%7Bv_%7B1%7D%7D%3D%28-%5Cfrac%7B8%7D%7B17%7D%2C%7E1%2B4%5Ccdot%28-%5Cfrac%7B8%7D%7B17%7D%29%29%3D%28-%5Cfrac%7B8%7D%7B17%7D%2C-%5Cfrac%7B15%7D%7B17%7D%29)
Portanto, a derivada direcional de
no ponto
tem valor 1 na direção de
e
Onde
Achando o gradiente de
Avaliando o gradiente em
Então, devemos encontrar
Desenvolvendo a primeira expressão, sendo
Então, temos
Então, temos 2 vetores que satisfazem
Portanto, a derivada direcional de
Lukyo:
Muito obrigado, amigo. :D
Perguntas interessantes
Matemática,
11 meses atrás
Matemática,
11 meses atrás
ENEM,
11 meses atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Física,
1 ano atrás