Soluções para a tarefa
Respondido por
1
Vamos aplicar a regra de Cauchy:
1 -
![\displaystyle \lim_{x \to +\infty} x \cdot e^{-x} \\ \\ \\ \lim_{x \to +\infty} x \cdot \frac{1}{e^{x}} \\ \\ \\ \lim_{x \to +\infty} \frac{x}{e^{x}} \\ \\ \\ \lim_{x \to +\infty} \frac{1}{e^{x}} \\ \\ \\ \lim_{x \to +\infty} \frac{1}{e^{\infty}} = 0 \displaystyle \lim_{x \to +\infty} x \cdot e^{-x} \\ \\ \\ \lim_{x \to +\infty} x \cdot \frac{1}{e^{x}} \\ \\ \\ \lim_{x \to +\infty} \frac{x}{e^{x}} \\ \\ \\ \lim_{x \to +\infty} \frac{1}{e^{x}} \\ \\ \\ \lim_{x \to +\infty} \frac{1}{e^{\infty}} = 0](https://tex.z-dn.net/?f=%5Cdisplaystyle+%5Clim_%7Bx+%5Cto+%2B%5Cinfty%7D+x+%5Ccdot+e%5E%7B-x%7D+%5C%5C+%5C%5C+%5C%5C++%5Clim_%7Bx+%5Cto+%2B%5Cinfty%7D+x+%5Ccdot+%5Cfrac%7B1%7D%7Be%5E%7Bx%7D%7D+%5C%5C+%5C%5C+%5C%5C++%5Clim_%7Bx+%5Cto+%2B%5Cinfty%7D+%5Cfrac%7Bx%7D%7Be%5E%7Bx%7D%7D+%5C%5C+%5C%5C+%5C%5C++%5Clim_%7Bx+%5Cto+%2B%5Cinfty%7D+%5Cfrac%7B1%7D%7Be%5E%7Bx%7D%7D+%5C%5C+%5C%5C+%5C%5C+%5Clim_%7Bx+%5Cto+%2B%5Cinfty%7D+%5Cfrac%7B1%7D%7Be%5E%7B%5Cinfty%7D%7D+%3D+0)
2 -
![\displaystyle \lim_{x \to +\infty} \frac{\ln(x)}{x} \\ \\ \\ \lim_{x \to +\infty} \frac{\displaystyle \frac{1}{x}}{1} \\ \\ \\ \lim_{x \to +\infty} \frac{1}{x} \\ \\ \\ \lim_{x \to +\infty} \frac{1}{\infty} = 0 \displaystyle \lim_{x \to +\infty} \frac{\ln(x)}{x} \\ \\ \\ \lim_{x \to +\infty} \frac{\displaystyle \frac{1}{x}}{1} \\ \\ \\ \lim_{x \to +\infty} \frac{1}{x} \\ \\ \\ \lim_{x \to +\infty} \frac{1}{\infty} = 0](https://tex.z-dn.net/?f=%5Cdisplaystyle+%5Clim_%7Bx+%5Cto+%2B%5Cinfty%7D+%5Cfrac%7B%5Cln%28x%29%7D%7Bx%7D+%5C%5C+%5C%5C+%5C%5C+%5Clim_%7Bx+%5Cto+%2B%5Cinfty%7D+%5Cfrac%7B%5Cdisplaystyle+%5Cfrac%7B1%7D%7Bx%7D%7D%7B1%7D+%5C%5C+%5C%5C+%5C%5C++%5Clim_%7Bx+%5Cto+%2B%5Cinfty%7D+%5Cfrac%7B1%7D%7Bx%7D+%5C%5C+%5C%5C+%5C%5C+%5Clim_%7Bx+%5Cto+%2B%5Cinfty%7D+%5Cfrac%7B1%7D%7B%5Cinfty%7D+%3D+0)
1 -
2 -
TheAprendiz:
Obrigado amigo. Me ajudou muito!!!
Perguntas interessantes