Matemática, perguntado por edu900, 1 ano atrás

\left \{ \begin{array}{c}2x-3y+z=1\\3x-3y-6z=0\\7x-2y-9z=2\end{array} Qual o conjunto solução?

Soluções para a tarefa

Respondido por andresccp
1
utilizando a regra de crammer
 \left[\begin{array}{ccc}2&-3&1\\3&-3&-6\\7&-2&-9\end{array}\right]  \left[\begin{array}{ccc}x\\y\\z\end{array}\right] =  \left[\begin{array}{ccc}1\\0\\2\end{array}\right]

 
temos

A=  \left[\begin{array}{ccc}2&-3&1\\3&-3&-6\\7&-2&-9\end{array}\right]  \\\\\\\boxed{det(A)=90}


resolvendo

A_x= \left[\begin{array}{ccc}\bf1&-3&1\\\bf0&-3&-6\\ \bf2&-2&-9\end{array}\right] \to det(A_x)= 57\\\\\\\\A_y= \left[\begin{array}{ccc}2&\bf1&1\\3&\bf0&-6\\7&\bf2&-9\end{array}\right]  \to det(A_y)=15\\\\\\\\A_z= \left[\begin{array}{ccc}2&-3&\bf1\\3&-3&\bf0\\7&-2&\bf2\end{array}\right] \to det(A_z)=21

a solução procurada será

x= \frac{det(A_x)}{det(A)}= \frac{57}{90}=    \frac{19}{30} \\\\\\y= \frac{det(A_y)}{det(A)}= \frac{15}{90}  = \frac{1}{6} \\\\\\z= \frac{det(A_z)}{det(A)}=  \frac{21}{90}= \frac{7}{30}
Perguntas interessantes