Lukyo:
Caso queiram, pode usar indução em k.
Soluções para a tarefa
Respondido por
3
Olá!
Seja
.
Parcialmente, temos:
S_1:
![\\ \displaystyle{\mathsf{S_1 = \sum_{p = 2^{1 - 1} + 1}^{2^1} \frac{1}{p}}} \\\\\\ \displaystyle{\mathsf{S_1 = \sum_{p = 2}^{2} \frac{1}{p}}} \\\\\\ \boxed{\mathsf{S_1 = \frac{1}{2}}} \\ \displaystyle{\mathsf{S_1 = \sum_{p = 2^{1 - 1} + 1}^{2^1} \frac{1}{p}}} \\\\\\ \displaystyle{\mathsf{S_1 = \sum_{p = 2}^{2} \frac{1}{p}}} \\\\\\ \boxed{\mathsf{S_1 = \frac{1}{2}}}](https://tex.z-dn.net/?f=%5C%5C+%5Cdisplaystyle%7B%5Cmathsf%7BS_1+%3D+%5Csum_%7Bp+%3D+2%5E%7B1+-+1%7D+%2B+1%7D%5E%7B2%5E1%7D+%5Cfrac%7B1%7D%7Bp%7D%7D%7D+%5C%5C%5C%5C%5C%5C+%5Cdisplaystyle%7B%5Cmathsf%7BS_1+%3D+%5Csum_%7Bp+%3D+2%7D%5E%7B2%7D+%5Cfrac%7B1%7D%7Bp%7D%7D%7D+%5C%5C%5C%5C%5C%5C+%5Cboxed%7B%5Cmathsf%7BS_1+%3D+%5Cfrac%7B1%7D%7B2%7D%7D%7D)
Que, satisfaz a desigualdade, pois é igual a 1/2.
S_2:
![\\ \displaystyle{\mathsf{S_2 = \sum_{p = 2^{2 - 1} + 1}^{2^2} \frac{1}{p}}} \\\\\\ \displaystyle{\mathsf{S_2 = \sum_{p = 3}^{4} \frac{1}{p}}} \\\\\\ \boxed{\mathsf{S_2 = \frac{1}{3} + \frac{1}{4}}} \\ \displaystyle{\mathsf{S_2 = \sum_{p = 2^{2 - 1} + 1}^{2^2} \frac{1}{p}}} \\\\\\ \displaystyle{\mathsf{S_2 = \sum_{p = 3}^{4} \frac{1}{p}}} \\\\\\ \boxed{\mathsf{S_2 = \frac{1}{3} + \frac{1}{4}}}](https://tex.z-dn.net/?f=%5C%5C+%5Cdisplaystyle%7B%5Cmathsf%7BS_2+%3D+%5Csum_%7Bp+%3D+2%5E%7B2+-+1%7D+%2B+1%7D%5E%7B2%5E2%7D+%5Cfrac%7B1%7D%7Bp%7D%7D%7D+%5C%5C%5C%5C%5C%5C+%5Cdisplaystyle%7B%5Cmathsf%7BS_2+%3D+%5Csum_%7Bp+%3D+3%7D%5E%7B4%7D+%5Cfrac%7B1%7D%7Bp%7D%7D%7D+%5C%5C%5C%5C%5C%5C+%5Cboxed%7B%5Cmathsf%7BS_2+%3D+%5Cfrac%7B1%7D%7B3%7D+%2B+%5Cfrac%7B1%7D%7B4%7D%7D%7D)
Mas,
. Então,
![\\ \mathsf{\frac{1}{3}+\frac{1}{4}\geq\frac{1}{4}+\frac{1}{4}}\\\\\\ \mathsf{S_2 \geq \frac{1}{4} + \frac{1}{4}} \\\\\\ \mathsf{S_2 \geq \frac{2}{4}} \\\\\\ \boxed{\boxed{\mathsf{S_2 \geq \frac{1}{2}}}} \\ \mathsf{\frac{1}{3}+\frac{1}{4}\geq\frac{1}{4}+\frac{1}{4}}\\\\\\ \mathsf{S_2 \geq \frac{1}{4} + \frac{1}{4}} \\\\\\ \mathsf{S_2 \geq \frac{2}{4}} \\\\\\ \boxed{\boxed{\mathsf{S_2 \geq \frac{1}{2}}}}](https://tex.z-dn.net/?f=%5C%5C+%5Cmathsf%7B%5Cfrac%7B1%7D%7B3%7D%2B%5Cfrac%7B1%7D%7B4%7D%5Cgeq%5Cfrac%7B1%7D%7B4%7D%2B%5Cfrac%7B1%7D%7B4%7D%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7BS_2+%5Cgeq+%5Cfrac%7B1%7D%7B4%7D+%2B+%5Cfrac%7B1%7D%7B4%7D%7D+%5C%5C%5C%5C%5C%5C+%5Cmathsf%7BS_2+%5Cgeq+%5Cfrac%7B2%7D%7B4%7D%7D+%5C%5C%5C%5C%5C%5C+%5Cboxed%7B%5Cboxed%7B%5Cmathsf%7BS_2+%5Cgeq+%5Cfrac%7B1%7D%7B2%7D%7D%7D%7D)
S_3:
![\\ \displaystyle{\mathsf{S_3 = \sum_{p = 2^{3 - 1} + 1}^{2^3} \frac{1}{p}}} \\\\\\ \displaystyle{\mathsf{S_3 = \sum_{p = 5}^{8} \frac{1}{p}}} \\\\\\ \boxed{\mathsf{S_3 = \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}}} \\ \displaystyle{\mathsf{S_3 = \sum_{p = 2^{3 - 1} + 1}^{2^3} \frac{1}{p}}} \\\\\\ \displaystyle{\mathsf{S_3 = \sum_{p = 5}^{8} \frac{1}{p}}} \\\\\\ \boxed{\mathsf{S_3 = \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}}}](https://tex.z-dn.net/?f=%5C%5C+%5Cdisplaystyle%7B%5Cmathsf%7BS_3+%3D+%5Csum_%7Bp+%3D+2%5E%7B3+-+1%7D+%2B+1%7D%5E%7B2%5E3%7D+%5Cfrac%7B1%7D%7Bp%7D%7D%7D+%5C%5C%5C%5C%5C%5C+%5Cdisplaystyle%7B%5Cmathsf%7BS_3+%3D+%5Csum_%7Bp+%3D+5%7D%5E%7B8%7D+%5Cfrac%7B1%7D%7Bp%7D%7D%7D+%5C%5C%5C%5C%5C%5C+%5Cboxed%7B%5Cmathsf%7BS_3+%3D+%5Cfrac%7B1%7D%7B5%7D+%2B+%5Cfrac%7B1%7D%7B6%7D+%2B+%5Cfrac%7B1%7D%7B7%7D+%2B+%5Cfrac%7B1%7D%7B8%7D%7D%7D)
Mas,
. Então,
![\\ \mathsf{\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\geq\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}}\\\\\\ \mathsf{S_3\geq\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}}\\\\\\ \mathsf{S_3 \geq \frac{4}{8}} \\\\\\ \boxed{\boxed{\mathsf{S_3 \geq \frac{1}{2}}}} \\ \mathsf{\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\geq\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}}\\\\\\ \mathsf{S_3\geq\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}}\\\\\\ \mathsf{S_3 \geq \frac{4}{8}} \\\\\\ \boxed{\boxed{\mathsf{S_3 \geq \frac{1}{2}}}}](https://tex.z-dn.net/?f=%5C%5C+%5Cmathsf%7B%5Cfrac%7B1%7D%7B5%7D%2B%5Cfrac%7B1%7D%7B6%7D%2B%5Cfrac%7B1%7D%7B7%7D%2B%5Cfrac%7B1%7D%7B8%7D%5Cgeq%5Cfrac%7B1%7D%7B8%7D%2B%5Cfrac%7B1%7D%7B8%7D%2B%5Cfrac%7B1%7D%7B8%7D%2B%5Cfrac%7B1%7D%7B8%7D%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7BS_3%5Cgeq%5Cfrac%7B1%7D%7B8%7D%2B%5Cfrac%7B1%7D%7B8%7D%2B%5Cfrac%7B1%7D%7B8%7D%2B%5Cfrac%7B1%7D%7B8%7D%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7BS_3+%5Cgeq+%5Cfrac%7B4%7D%7B8%7D%7D+%5C%5C%5C%5C%5C%5C+%5Cboxed%7B%5Cboxed%7B%5Cmathsf%7BS_3+%5Cgeq+%5Cfrac%7B1%7D%7B2%7D%7D%7D%7D)
(...)
S_n:
![\\ \displaystyle{\mathsf{S_n = \sum_{p = 2^{n - 1} + 1}^{2^n} \frac{1}{p}}} \\\\\\ \boxed{\mathsf{S_n = \frac{1}{2^{n - 1} + 1} + \frac{1}{2^{n - 1} + 2} + \frac{1}{2^{n - 1} + 3} + ... + \frac{1}{2^n}}} \\ \displaystyle{\mathsf{S_n = \sum_{p = 2^{n - 1} + 1}^{2^n} \frac{1}{p}}} \\\\\\ \boxed{\mathsf{S_n = \frac{1}{2^{n - 1} + 1} + \frac{1}{2^{n - 1} + 2} + \frac{1}{2^{n - 1} + 3} + ... + \frac{1}{2^n}}}](https://tex.z-dn.net/?f=%5C%5C+%5Cdisplaystyle%7B%5Cmathsf%7BS_n+%3D+%5Csum_%7Bp+%3D+2%5E%7Bn+-+1%7D+%2B+1%7D%5E%7B2%5En%7D+%5Cfrac%7B1%7D%7Bp%7D%7D%7D+%5C%5C%5C%5C%5C%5C+%5Cboxed%7B%5Cmathsf%7BS_n+%3D+%5Cfrac%7B1%7D%7B2%5E%7Bn+-+1%7D+%2B+1%7D+%2B+%5Cfrac%7B1%7D%7B2%5E%7Bn+-+1%7D+%2B+2%7D+%2B+%5Cfrac%7B1%7D%7B2%5E%7Bn+-+1%7D+%2B+3%7D+%2B+...+%2B+%5Cfrac%7B1%7D%7B2%5En%7D%7D%7D)
Daí,
![\\ \mathsf{\left(\frac{1}{2^{n-1}+1}+\frac{1}{2^{n-1}+2}+\frac{1}{2^{n-1}+3}+...+\frac{1}{2^n}\right)\geq\left(\frac{1}{2^n}+\frac{1}{2^n}+\frac{1}{2^n}+...+\frac{1}{2^n}\right)}\\\\\\ \mathsf{S_n \geq \frac{2^{n - 1}}{2^n}} \\\\\\ \mathsf{S_n \geq \frac{2^n \cdot 2^{- 1}}{2^n}} \\\\\\ \mathsf{S_n \geq 2^{- 1}} \\\\\\ \boxed{\boxed{\mathsf{S_n \geq \frac{1}{2}}}} \\ \mathsf{\left(\frac{1}{2^{n-1}+1}+\frac{1}{2^{n-1}+2}+\frac{1}{2^{n-1}+3}+...+\frac{1}{2^n}\right)\geq\left(\frac{1}{2^n}+\frac{1}{2^n}+\frac{1}{2^n}+...+\frac{1}{2^n}\right)}\\\\\\ \mathsf{S_n \geq \frac{2^{n - 1}}{2^n}} \\\\\\ \mathsf{S_n \geq \frac{2^n \cdot 2^{- 1}}{2^n}} \\\\\\ \mathsf{S_n \geq 2^{- 1}} \\\\\\ \boxed{\boxed{\mathsf{S_n \geq \frac{1}{2}}}}](https://tex.z-dn.net/?f=%5C%5C+%5Cmathsf%7B%5Cleft%28%5Cfrac%7B1%7D%7B2%5E%7Bn-1%7D%2B1%7D%2B%5Cfrac%7B1%7D%7B2%5E%7Bn-1%7D%2B2%7D%2B%5Cfrac%7B1%7D%7B2%5E%7Bn-1%7D%2B3%7D%2B...%2B%5Cfrac%7B1%7D%7B2%5En%7D%5Cright%29%5Cgeq%5Cleft%28%5Cfrac%7B1%7D%7B2%5En%7D%2B%5Cfrac%7B1%7D%7B2%5En%7D%2B%5Cfrac%7B1%7D%7B2%5En%7D%2B...%2B%5Cfrac%7B1%7D%7B2%5En%7D%5Cright%29%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7BS_n+%5Cgeq+%5Cfrac%7B2%5E%7Bn+-+1%7D%7D%7B2%5En%7D%7D+%5C%5C%5C%5C%5C%5C+%5Cmathsf%7BS_n+%5Cgeq+%5Cfrac%7B2%5En+%5Ccdot+2%5E%7B-+1%7D%7D%7B2%5En%7D%7D+%5C%5C%5C%5C%5C%5C+%5Cmathsf%7BS_n+%5Cgeq+2%5E%7B-+1%7D%7D+%5C%5C%5C%5C%5C%5C+%5Cboxed%7B%5Cboxed%7B%5Cmathsf%7BS_n+%5Cgeq+%5Cfrac%7B1%7D%7B2%7D%7D%7D%7D)
Daí, concluímos que, de facto,
![\displaystyle{\mathsf{\sum_{p = 2^{k - 1} + 1}^{2^k} \frac{1}{p}\geq\frac{1}{2}}} \displaystyle{\mathsf{\sum_{p = 2^{k - 1} + 1}^{2^k} \frac{1}{p}\geq\frac{1}{2}}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%7B%5Cmathsf%7B%5Csum_%7Bp+%3D+2%5E%7Bk+-+1%7D+%2B+1%7D%5E%7B2%5Ek%7D+%5Cfrac%7B1%7D%7Bp%7D%5Cgeq%5Cfrac%7B1%7D%7B2%7D%7D%7D)
Seja
Parcialmente, temos:
S_1:
Que, satisfaz a desigualdade, pois é igual a 1/2.
S_2:
Mas,
S_3:
Mas,
(...)
S_n:
Daí,
Daí, concluímos que, de facto,
Perguntas interessantes
Matemática,
11 meses atrás
Matemática,
11 meses atrás
Filosofia,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás