Matemática, perguntado por Lukyo, 1 ano atrás

\large\begin{array}{l}\\\\ \textsf{Exerc\'icio relacionado \`a s\'erie harm\^onica e ao fato de esta ser divergente.}\\\\ \textsf{Mostre que}\\\\ \mathsf{\displaystyle\sum_{p=2^{k-1}+1}^{2^k}~\frac{1}{p}~\ge ~\frac{1}{2}}\\\\ \textsf{para todo }\mathsf{k \ge 1,\;k\in\mathbb{N}.}\\ \end{array}
~


Lukyo: Caso queiram, pode usar indução em k.
Lukyo: Caso tenha problemas para visualizar a tarefa, experimente abrir pelo navegador: http://brainly.com.br/tarefa/7332133

Soluções para a tarefa

Respondido por DanJR
3
 Olá!
 
 Seja \displaystyle{\mathsf{S_n = \sum_{p = 2^{n - 1} + 1}^{2^n} \frac{1}{p}}}
 
 Parcialmente, temos:

S_1:

\\ \displaystyle{\mathsf{S_1 = \sum_{p = 2^{1 - 1} + 1}^{2^1} \frac{1}{p}}} \\\\\\ \displaystyle{\mathsf{S_1 = \sum_{p = 2}^{2} \frac{1}{p}}} \\\\\\ \boxed{\mathsf{S_1 = \frac{1}{2}}}

 Que, satisfaz a desigualdade, pois é igual a 1/2.


S_2:

\\ \displaystyle{\mathsf{S_2 = \sum_{p = 2^{2 - 1} + 1}^{2^2} \frac{1}{p}}} \\\\\\ \displaystyle{\mathsf{S_2 = \sum_{p = 3}^{4} \frac{1}{p}}} \\\\\\ \boxed{\mathsf{S_2 = \frac{1}{3} + \frac{1}{4}}}

 Mas, \mathsf{\frac{1}{3}+\frac{1}{4}\geq\frac{1}{4}+\frac{1}{4}}. Então,

\\ \mathsf{\frac{1}{3}+\frac{1}{4}\geq\frac{1}{4}+\frac{1}{4}}\\\\\\ \mathsf{S_2 \geq \frac{1}{4} + \frac{1}{4}} \\\\\\ \mathsf{S_2 \geq \frac{2}{4}} \\\\\\ \boxed{\boxed{\mathsf{S_2 \geq \frac{1}{2}}}}

S_3:

\\ \displaystyle{\mathsf{S_3 = \sum_{p = 2^{3 - 1} + 1}^{2^3} \frac{1}{p}}} \\\\\\ \displaystyle{\mathsf{S_3 = \sum_{p = 5}^{8} \frac{1}{p}}} \\\\\\ \boxed{\mathsf{S_3 = \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}}}

Mas, \mathsf{\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\geq\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}}. Então,

\\ \mathsf{\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\geq\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}}\\\\\\ \mathsf{S_3\geq\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}}\\\\\\ \mathsf{S_3 \geq \frac{4}{8}} \\\\\\ \boxed{\boxed{\mathsf{S_3 \geq \frac{1}{2}}}}

(...)

S_n:

\\ \displaystyle{\mathsf{S_n = \sum_{p = 2^{n - 1} + 1}^{2^n} \frac{1}{p}}} \\\\\\ \boxed{\mathsf{S_n = \frac{1}{2^{n - 1} + 1} + \frac{1}{2^{n - 1} + 2} + \frac{1}{2^{n - 1} + 3} + ... + \frac{1}{2^n}}}

Daí,

\\ \mathsf{\left(\frac{1}{2^{n-1}+1}+\frac{1}{2^{n-1}+2}+\frac{1}{2^{n-1}+3}+...+\frac{1}{2^n}\right)\geq\left(\frac{1}{2^n}+\frac{1}{2^n}+\frac{1}{2^n}+...+\frac{1}{2^n}\right)}\\\\\\ \mathsf{S_n \geq \frac{2^{n - 1}}{2^n}} \\\\\\ \mathsf{S_n \geq \frac{2^n \cdot 2^{- 1}}{2^n}} \\\\\\ \mathsf{S_n \geq 2^{- 1}} \\\\\\ \boxed{\boxed{\mathsf{S_n \geq \frac{1}{2}}}}

 Daí, concluímos que, de facto,
 
\displaystyle{\mathsf{\sum_{p = 2^{k - 1} + 1}^{2^k} \frac{1}{p}\geq\frac{1}{2}}}

 

Usuário anônimo: muita boa a resposta
Lukyo: Muito obrigado! Boa resposta. =)
viniciushenrique406: Whoa! :D
DanJR: Valeu!!
danielfalves: Excelente!
Perguntas interessantes