Matemática, perguntado por DInamiCZ, 1 ano atrás

 \frac{7}{x-1} = \frac{6x+1}{x+1} -  \frac{3(1+2x^2)}{x^2-1}

Como resolver essa equação aplicando bhaskara?
Calculando o delta, as soluções..?

Soluções para a tarefa

Respondido por emicosonia
1


   7          6x + 1        3(1 + 2x²)   ( faz a multiplicação)
-------- = -------------- - ----------------
x - 1           x + 1          x² - 1


     7          6x + 1           3 + 6x²
-------- = -------------- - ----------------  SOMA com fração FAZ mmc
x - 1           x + 1             x² - 1    lembrando que: x² - 1 = (x - 1)(x + 1)
                                                 então mmc = (x - 1)(x + 1)


   7          6x + 1           3 + 6x²
-------- = -------------- - ----------------
x - 1           x + 1          x² - 1



7(x + 1) = (6x + 1)(x- 1) - 1(3 + 6x²)
-----------------------------------------------  fração com igualdade(=)
       (x - 1)(x + 1)                            despreza o denominador



7(x + 1) = (6x + 1)(x- 1) - 1(3 + 6x²)
7x + 7   = (6x² - 6x +1x - 1) - 3 - 6x²
7x + 7   = (6x²      - 5x   - 1) - 3 - 6x²
7x + 7   = 6x² - 5x - 1 - 3 - 6x²    junta iguai
7x + 7   = 6x² - 6x² - 5x - 1 - 3
7x + 7    =     0        - 5x - 4
7x + 7 = - 5x - 4    isolar o (x))
7x + 7 + 5x = - 4
7x + 5x = - 4 - 7
12x = - 11
x = - 11/12  ( resposta)

DInamiCZ: cadê o delta?
DInamiCZ: Ah sim, agora entendi. Deu uma equação do 1º grau.
DInamiCZ: Obrigado.
Perguntas interessantes