Matemática, perguntado por Laurakarolina049392, 1 ano atrás

7 x^{2} /3 + x/2 =  x^{2}  x^{2}


adjemir: Laurakarolina, explique apenas se o 2º membro é realmente x².x² (o que daria x^(4). É isso mesmo ou não? Será que houve algum engano de digitação no 2º membro da expressão da sua questão? Aguardamos o seu pronunciamento.
Laurakarolina049392: CORRIGINDO = x²
Laurakarolina049392: fração
Laurakarolina049392: 7x/3 + x/2 = x²
adjemir: Ah, bom. como você já se pronunciou sobre a escrita correta da questão, então vamos tentar resolver no local próprio. Aguarde.

Soluções para a tarefa

Respondido por adjemir
2
Vamos lá.

Veja, Laurakarolina, como você já deu a escrita correta da sua questão, então vamos tentar sua resolução, que é simples e que estamos editando a resposta dada anteriormente, pois na correção houve um certo "mal entendido". Lá vai a edição da nossa resposta.

7x²/3 + x/2 = x² -----  note que, no 1º membro, o mmc entre 2 e 3 = 6. Assim, utilizando-o no 1º membro temos (lembre-se: toma-se o mmc e divide-se pelo denominador; o resultado que der, multiplica-se pelo numerador):

(2*7x² + 3*x)/6 = x² ------ desenvolvendo, teremos:
(14x² + 3x)/6 = x² ----  --- multiplicando-se em cruz, teremos:
14x² + 3x = 6*x² ---- ou apenas:
14x² + 3x = 6x²  ----- passando o 2º membro para o 1º, teremos:
14x² + 3x - 6x² = 0  ----- reduzindo os termos semelhantes, ficaremos:
8x² + 3x = 0    ---- Vamos pôr "x" em evidência, ficando:
x*(8x + 3) = 0 ---- note que ficamos com o produto entre dois fatores cujo resultado é nulo. Quando isso ocorre, um dos fatores é nulo. Assim, teremos as seguintes possibilidades

ou
x = 0 -----> x' = 0

ou
8x + 3 = 0 -----> 8x = -3 -----> x'' = -3/8.

Assim, como você viu, as raízes são as que demos aí em cima. Ou seja: x' = 0, ou x'' = -3/8.

É isso aí.
Deu pra entender bem?

OK?
Adjemir.

adjemir: Hei, agora é que eu vi que, na sua correção você colocou que no início é"7x/3) e NÃO "7x²/3". Então vou ter que editar a resposta. Aguarde, ok?
Laurakarolina049392: Não eu copiei errado a sua resposta esta certa, Obrigada!
adjemir: Então eu não precisarei editar? Mas já foi editada. Nesse caso, terei que editar novamente pra voltar à resposta que dei anteriormente. Então aguarde novamente.
adjemir: Pronto. Finalmente fiz a segunda edição e a resposta está dada como anteriormente, ok? Espero que não haja mais "mal entendido", rsrsrsrs....
adjemir: Agradecemos ao moderador Simuroc pela aprovação da nossa resposta. Um cordial abraço.
Perguntas interessantes