Soluções para a tarefa
Resposta:
)
\sf (\sqrt{5}+\sqrt{3})^2=(\sqrt{5})^2+2\cdot\sqrt{5}\cdot\sqrt{3}+(\sqrt{3})^2(5+3)2=(5)2+2⋅5⋅3+(3)2
\sf (\sqrt{5}+\sqrt{3})^2=5+2\cdot\sqrt{15}+3(5+3)2=5+2⋅15+3
\sf (\sqrt{5}+\sqrt{3})^2=5+3+2\sqrt{15}(5+3)2=5+3+215
\sf \red{(\sqrt{5}+\sqrt{3})^2=8+2\sqrt{15}}(5+3)2=8+215
b)
\sf (2-\sqrt{2})^2=2^2-2\cdot2\cdot\sqrt{2}+(\sqrt{2})^2(2−2)2=22−2⋅2⋅2+(2)2
\sf (2-\sqrt{2})^2=4-4\sqrt{2}+2(2−2)2=4−42+2
\sf (2-\sqrt{2})^2=4+2-4\sqrt{2}(2−2)2=4+2−42
\sf \red{(2-\sqrt{2})^2=6-4\sqrt{2}}(2−2)2=6−42
c)
\sf (\sqrt{7}+\sqrt{5})\cdot(\sqrt{7}-\sqrt{5})(7+5)⋅(7−5)
\sf =(\sqrt{7})^2-(\sqrt{5})^2=(7)2−(5)2
\sf =7-5=7−5
\sf =\red{2}=2
d)
\sf (a+\sqrt{b})^2=a^2+2\cdot a\cdot\sqrt{b}+(\sqrt{b})^2(a+b)2=a2+2⋅a⋅b+(b)2
\sf (a+\sqrt{b})^2=a^2+2a\sqrt{b}+b(a+b)2=a2+2ab+b
\sf \red{(a+\sqrt{b})^2=a^2+b+2a\sqrt{b}}(a+b)2=a2+b+2ab
e)
\sf (a+\sqrt{b})^2=a^2+2\cdot a\cdot\sqrt{b}+(\sqrt{b})^2(a+b)2=a2+2⋅a⋅b