Suponha que o tempo de resposta na execução de determinado algoritmo é uma variável aleatória com distribuição normal de média de 23 segundos e desvio padrão de 4 segundos. A probabilidade de que o tempo de resposta seja menor que 25 segundos é de:
Soluções para a tarefa
Respondido por
12
Nesta situação deve realizar desta forma:
Z = 23 - 23 / 4 = 0
Z = 25-23 / 4 = 0,5
Após isso, temos:
P (23 < x < 25) = P ( 0 < z < 0,5) = 0,1915 = 19,15%
Z = 23 - 23 / 4 = 0
Z = 25-23 / 4 = 0,5
Após isso, temos:
P (23 < x < 25) = P ( 0 < z < 0,5) = 0,1915 = 19,15%
Usuário anônimo:
Continuando o problema:Obtido 0,1915, na situação solicita que seja o menor que 25 segundos:
Respondido por
2
Resposta:z=((x-media))/(desvio padrão)
z=((25-23))/4
z=0,5 (tabela)
p(<25)=1-0,3085
p(<25)=0,6915
Explicação:
Perguntas interessantes
História,
10 meses atrás
Geografia,
10 meses atrás
Ed. Física,
10 meses atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás