Suponha que existem 35 maneiras distintas de se comprar 3 refrigerantes em uma loja, em que há n tipos de refrigerantes disponíveis. Além disso, se for acrescentado mais um novo tipo de refrigerante, então existem 56 maneiras de serem adquiridos esses 3 refrigerantes. Nessas condições, determine o valor de n. Sugestão: Assuma que podem ser comprados refrigerantes repetindo-se um mesmo tipo.
Soluções para a tarefa
Respondido por
2
Caso tenha problemas para visualizar a resposta pelo aplicativo, experimente abrir pelo navegador: https://brainly.com.br/tarefa/8084720
_______________
A resposta é
e a listagem com as 35 possibilidades de escolha estão no arquivo em anexo.
__________
Em uma loja, há
opções de tipos de refrigerante disponíveis.
O número total de maneiras que temos de se escolher 3 destes tipos, sendo permitida a escolha repetida de sabores, é dado pelo cálculo das combinações com repetição de
elementos, tomados em grupos de 3:
![\mathsf{Cr_{n,\,3}}\\\\\\ =\mathsf{\dbinom{n+3-1}{3}}\\\\\\ =\mathsf{\dbinom{n+2}{3}}\\\\\\ =\mathsf{\dfrac{(n+2)!}{3!\cdot (n+2-3)!}}\\\\\\ =\mathsf{\dfrac{(n+2)!}{3!\cdot (n-1)!}} \mathsf{Cr_{n,\,3}}\\\\\\ =\mathsf{\dbinom{n+3-1}{3}}\\\\\\ =\mathsf{\dbinom{n+2}{3}}\\\\\\ =\mathsf{\dfrac{(n+2)!}{3!\cdot (n+2-3)!}}\\\\\\ =\mathsf{\dfrac{(n+2)!}{3!\cdot (n-1)!}}](https://tex.z-dn.net/?f=%5Cmathsf%7BCr_%7Bn%2C%5C%2C3%7D%7D%5C%5C%5C%5C%5C%5C+%3D%5Cmathsf%7B%5Cdbinom%7Bn%2B3-1%7D%7B3%7D%7D%5C%5C%5C%5C%5C%5C+%3D%5Cmathsf%7B%5Cdbinom%7Bn%2B2%7D%7B3%7D%7D%5C%5C%5C%5C%5C%5C+%3D%5Cmathsf%7B%5Cdfrac%7B%28n%2B2%29%21%7D%7B3%21%5Ccdot+%28n%2B2-3%29%21%7D%7D%5C%5C%5C%5C%5C%5C+%3D%5Cmathsf%7B%5Cdfrac%7B%28n%2B2%29%21%7D%7B3%21%5Ccdot+%28n-1%29%21%7D%7D)
![=\mathsf{\dfrac{(n+2)\cdot (n+1)\cdot n\cdot (n-1)!}{3!\cdot (n-1)!}}\\\\\\ =\mathsf{\dfrac{(n+2)\cdot (n+1)\cdot n}{3\cdot 2\cdot 1}}\qquad\quad\checkmark =\mathsf{\dfrac{(n+2)\cdot (n+1)\cdot n\cdot (n-1)!}{3!\cdot (n-1)!}}\\\\\\ =\mathsf{\dfrac{(n+2)\cdot (n+1)\cdot n}{3\cdot 2\cdot 1}}\qquad\quad\checkmark](https://tex.z-dn.net/?f=%3D%5Cmathsf%7B%5Cdfrac%7B%28n%2B2%29%5Ccdot+%28n%2B1%29%5Ccdot+n%5Ccdot+%28n-1%29%21%7D%7B3%21%5Ccdot+%28n-1%29%21%7D%7D%5C%5C%5C%5C%5C%5C+%3D%5Cmathsf%7B%5Cdfrac%7B%28n%2B2%29%5Ccdot+%28n%2B1%29%5Ccdot+n%7D%7B3%5Ccdot+2%5Ccdot+1%7D%7D%5Cqquad%5Cquad%5Ccheckmark)
e esta expressão deve ser igual a 35:
![\mathsf{Cr_{n,\,3}=35}\\\\\\ \mathsf{\dfrac{(n+2)\cdot (n+1)\cdot n}{3\cdot 2\cdot 1}=35}\\\\\\ \mathsf{\dfrac{(n+2)\cdot (n+1)\cdot n}{6}=35}\\\\\\ \mathsf{(n+2)\cdot (n+1)\cdot n=6\cdot 35}\\\\ \mathsf{(n+2)\cdot (n+1)\cdot n=210\qquad\quad(i)} \mathsf{Cr_{n,\,3}=35}\\\\\\ \mathsf{\dfrac{(n+2)\cdot (n+1)\cdot n}{3\cdot 2\cdot 1}=35}\\\\\\ \mathsf{\dfrac{(n+2)\cdot (n+1)\cdot n}{6}=35}\\\\\\ \mathsf{(n+2)\cdot (n+1)\cdot n=6\cdot 35}\\\\ \mathsf{(n+2)\cdot (n+1)\cdot n=210\qquad\quad(i)}](https://tex.z-dn.net/?f=%5Cmathsf%7BCr_%7Bn%2C%5C%2C3%7D%3D35%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7B%5Cdfrac%7B%28n%2B2%29%5Ccdot+%28n%2B1%29%5Ccdot+n%7D%7B3%5Ccdot+2%5Ccdot+1%7D%3D35%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7B%5Cdfrac%7B%28n%2B2%29%5Ccdot+%28n%2B1%29%5Ccdot+n%7D%7B6%7D%3D35%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7B%28n%2B2%29%5Ccdot+%28n%2B1%29%5Ccdot+n%3D6%5Ccdot+35%7D%5C%5C%5C%5C+%5Cmathsf%7B%28n%2B2%29%5Ccdot+%28n%2B1%29%5Ccdot+n%3D210%5Cqquad%5Cquad%28i%29%7D)
__________
Adicionando um novo tipo de refrigerante, o número de maneiras de se escolher 3 refrigerantes sobe para 56.
Neste novo cenário, devemos ter
![\mathsf{Cr_{(n+1),\,3}=56}\\\\\\ \mathsf{\dbinom{(n+1)+3-1}{3}=56}\\\\\\ \mathsf{\dbinom{n+3}{3}=56}\\\\\\ \mathsf{\dfrac{(n+3)!}{3!\cdot (n+3-3)!}=56}\\\\\\ \mathsf{\dfrac{(n+3)\cdot (n+2)\cdot (n+1)\cdot \diagup\!\!\!\!\! n!}{3!\cdot \diagup\!\!\!\!\! n!}=56} \mathsf{Cr_{(n+1),\,3}=56}\\\\\\ \mathsf{\dbinom{(n+1)+3-1}{3}=56}\\\\\\ \mathsf{\dbinom{n+3}{3}=56}\\\\\\ \mathsf{\dfrac{(n+3)!}{3!\cdot (n+3-3)!}=56}\\\\\\ \mathsf{\dfrac{(n+3)\cdot (n+2)\cdot (n+1)\cdot \diagup\!\!\!\!\! n!}{3!\cdot \diagup\!\!\!\!\! n!}=56}](https://tex.z-dn.net/?f=%5Cmathsf%7BCr_%7B%28n%2B1%29%2C%5C%2C3%7D%3D56%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7B%5Cdbinom%7B%28n%2B1%29%2B3-1%7D%7B3%7D%3D56%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7B%5Cdbinom%7Bn%2B3%7D%7B3%7D%3D56%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7B%5Cdfrac%7B%28n%2B3%29%21%7D%7B3%21%5Ccdot+%28n%2B3-3%29%21%7D%3D56%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7B%5Cdfrac%7B%28n%2B3%29%5Ccdot+%28n%2B2%29%5Ccdot+%28n%2B1%29%5Ccdot+%5Cdiagup%5C%21%5C%21%5C%21%5C%21%5C%21+n%21%7D%7B3%21%5Ccdot+%5Cdiagup%5C%21%5C%21%5C%21%5C%21%5C%21+n%21%7D%3D56%7D)
![\mathsf{\dfrac{(n+3)\cdot (n+2)\cdot (n+1)}{3\cdot 2\cdot 1}=56}\\\\\\ \mathsf{\dfrac{(n+3)\cdot (n+2)\cdot (n+1)}{6}=56}\\\\\\ \mathsf{(n+3)\cdot (n+2)\cdot (n+1)=6\cdot 56}\\\\ \mathsf{(n+3)\cdot (n+2)\cdot (n+1)=336\qquad\quad(ii)} \mathsf{\dfrac{(n+3)\cdot (n+2)\cdot (n+1)}{3\cdot 2\cdot 1}=56}\\\\\\ \mathsf{\dfrac{(n+3)\cdot (n+2)\cdot (n+1)}{6}=56}\\\\\\ \mathsf{(n+3)\cdot (n+2)\cdot (n+1)=6\cdot 56}\\\\ \mathsf{(n+3)\cdot (n+2)\cdot (n+1)=336\qquad\quad(ii)}](https://tex.z-dn.net/?f=%5Cmathsf%7B%5Cdfrac%7B%28n%2B3%29%5Ccdot+%28n%2B2%29%5Ccdot+%28n%2B1%29%7D%7B3%5Ccdot+2%5Ccdot+1%7D%3D56%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7B%5Cdfrac%7B%28n%2B3%29%5Ccdot+%28n%2B2%29%5Ccdot+%28n%2B1%29%7D%7B6%7D%3D56%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7B%28n%2B3%29%5Ccdot+%28n%2B2%29%5Ccdot+%28n%2B1%29%3D6%5Ccdot+56%7D%5C%5C%5C%5C+%5Cmathsf%7B%28n%2B3%29%5Ccdot+%28n%2B2%29%5Ccdot+%28n%2B1%29%3D336%5Cqquad%5Cquad%28ii%29%7D)
Dividindo as equações
por
membro a membro, obtemos
![\mathsf{\dfrac{(n+2)\cdot (n+1)\cdot n}{(n+3)\cdot (n+2)\cdot (n+1)}=\dfrac{210}{336}}\\\\\\ \mathsf{\dfrac{n}{n+3}=\dfrac{210}{336}\begin{array}{c}^{\mathsf{\div 42}}\\^{\mathsf{\div 42}} \end{array}}\\\\\\ \mathsf{\dfrac{n}{n+3}=\dfrac{5}{8}} \mathsf{\dfrac{(n+2)\cdot (n+1)\cdot n}{(n+3)\cdot (n+2)\cdot (n+1)}=\dfrac{210}{336}}\\\\\\ \mathsf{\dfrac{n}{n+3}=\dfrac{210}{336}\begin{array}{c}^{\mathsf{\div 42}}\\^{\mathsf{\div 42}} \end{array}}\\\\\\ \mathsf{\dfrac{n}{n+3}=\dfrac{5}{8}}](https://tex.z-dn.net/?f=%5Cmathsf%7B%5Cdfrac%7B%28n%2B2%29%5Ccdot+%28n%2B1%29%5Ccdot+n%7D%7B%28n%2B3%29%5Ccdot+%28n%2B2%29%5Ccdot+%28n%2B1%29%7D%3D%5Cdfrac%7B210%7D%7B336%7D%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7B%5Cdfrac%7Bn%7D%7Bn%2B3%7D%3D%5Cdfrac%7B210%7D%7B336%7D%5Cbegin%7Barray%7D%7Bc%7D%5E%7B%5Cmathsf%7B%5Cdiv+42%7D%7D%5C%5C%5E%7B%5Cmathsf%7B%5Cdiv+42%7D%7D+%5Cend%7Barray%7D%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7B%5Cdfrac%7Bn%7D%7Bn%2B3%7D%3D%5Cdfrac%7B5%7D%7B8%7D%7D)
![\mathsf{8n=5(n+3)}\\\\ \mathsf{8n=5n+15}\\\\ \mathsf{8n-5n=15}\\\\ \mathsf{3n=15}\\\\ \mathsf{n=\dfrac{15}{3}}\\\\\\ \boxed{\begin{array}{c}\mathsf{n=5} \end{array}}\quad\longleftarrow\quad\textsf{esta \'e a resposta.} \mathsf{8n=5(n+3)}\\\\ \mathsf{8n=5n+15}\\\\ \mathsf{8n-5n=15}\\\\ \mathsf{3n=15}\\\\ \mathsf{n=\dfrac{15}{3}}\\\\\\ \boxed{\begin{array}{c}\mathsf{n=5} \end{array}}\quad\longleftarrow\quad\textsf{esta \'e a resposta.}](https://tex.z-dn.net/?f=%5Cmathsf%7B8n%3D5%28n%2B3%29%7D%5C%5C%5C%5C+%5Cmathsf%7B8n%3D5n%2B15%7D%5C%5C%5C%5C+%5Cmathsf%7B8n-5n%3D15%7D%5C%5C%5C%5C+%5Cmathsf%7B3n%3D15%7D%5C%5C%5C%5C+%5Cmathsf%7Bn%3D%5Cdfrac%7B15%7D%7B3%7D%7D%5C%5C%5C%5C%5C%5C+%5Cboxed%7B%5Cbegin%7Barray%7D%7Bc%7D%5Cmathsf%7Bn%3D5%7D+%5Cend%7Barray%7D%7D%5Cquad%5Clongleftarrow%5Cquad%5Ctextsf%7Besta+%5C%27e+a+resposta.%7D)
Nesta loja, há 5 tipos diferentes de refrigerante.
Bons estudos! :-)
Tags: combinações com repetição análise combinatória
_______________
A resposta é
__________
Em uma loja, há
O número total de maneiras que temos de se escolher 3 destes tipos, sendo permitida a escolha repetida de sabores, é dado pelo cálculo das combinações com repetição de
e esta expressão deve ser igual a 35:
__________
Adicionando um novo tipo de refrigerante, o número de maneiras de se escolher 3 refrigerantes sobe para 56.
Neste novo cenário, devemos ter
Dividindo as equações
Nesta loja, há 5 tipos diferentes de refrigerante.
Bons estudos! :-)
Tags: combinações com repetição análise combinatória
Anexos:
![](https://pt-static.z-dn.net/files/d2d/98f21a734fcdcd3ff31aa1184ca08f9a.png)
Perguntas interessantes
Inglês,
11 meses atrás
Matemática,
11 meses atrás
Matemática,
11 meses atrás
História,
1 ano atrás
Matemática,
1 ano atrás
História,
1 ano atrás
Química,
1 ano atrás