ENEM, perguntado por giupignato9073, 5 meses atrás

Subtraindo-se 3 de um certo número obtém-se o dobro da sua raiz quadrada qual é esse número.

Soluções para a tarefa

Respondido por pedrogabriel4545
0

O número procurado é 9.

Vamos considerar que o número desconhecido seja x.

Com as informações do enunciado, podemos montar a seguinte equação:

x - 3 = 2√x.

Para "eliminarmos" a radiciação, vamos elevar ambos os lados da equação ao quadrado:

(x - 3)² = (2√x)²

x² - 6x + 9 = 4x

x² - 10x + 9 = 0.

Temos aqui uma equação do segundo grau. Para resolvê-la, vamos utilizar a fórmula de Bhaskara:

Δ = (-10)² - 4.1.9

Δ = 100 - 36

Δ = 64.

Como Δ > 0, então a equação possui duas raízes reais distintas:

Vamos verificar qual dos dois números satisfaz a equação x - 3 = 2√x.

Se x = 9, então:

9 - 3 = 6 = 2√9.

Se x = 1, então:

1 - 3 = -2 ≠ 2√1.

Portanto, só vale se x = 9.

Perguntas interessantes