Matemática, perguntado por boo321, 11 meses atrás

Soma e produto das raizes da equação 6x^2-24x+10=0​

Soluções para a tarefa

Respondido por jady100
0

Explicação passo-a-passo:

a = 6 ; b = -24 ; c = 10

∆ = b^2 - 4 × a × c

∆ = (-24)^2 - 4 × 6 × 10

∆ = 576 - 24 × 10

∆ = 576 - 240

∆ = 336

√∆ = √336

336 ÷ 2

168 ÷ 2

84 ÷ 2

42 ÷ 2

21 ÷ 3

7 ÷ 7

1

 \sqrt{336}  =  \sqrt{ {2}^{2}  \times  {2}^{2}  \times 3  \times 7}  \\  \sqrt{336 }  =  \sqrt{ {2}^{2} }  \times  \sqrt{ {2}^{2} }  \times  \sqrt{3 }  \times  \sqrt{7}  \\  \sqrt{336}  = 2 \times 2 \sqrt{3 \times 7} \\  \sqrt{336}  = 4 \sqrt{21}

X = -b + - √∆ ÷ 2 × a

X' = -(-24) + 4√21 ÷ 2× 6

X' = +24 + 4√21 ÷ 12

X' = +2 + 4√21

X' = 6√21

X" = -(-24) - 4√21 ÷ 2 × 6

X" = +24 - 4√21 ÷ 12

X" = +2 - 4√21

X" = -2√21

Respondido por GowtherBr
0

Vamos lá :

6x² - 24x + 10 = 0

S  = - b/a  = -(- 24)/4  = 24/4  = 6

P  = c/a  = 10/6  = 5/3

Espero ter ajudado !!

Perguntas interessantes