Matemática, perguntado por manuelacristine, 1 ano atrás

sistemas b-c/4=4 3c+4b/6-3c+b/9=11

Soluções para a tarefa

Respondido por Usuário anônimo
0
Bom dia Manuela!

Solução!

Vamos organizar as equações e em seguida substitui-la na outra.

Equacao~~i\\\\\\
 \dfrac{b-c}{4}=4\\\\\
b-c=16\\\\\
b=16+c

Equacao~~ii\\\\\
 \dfrac{3c+4b}{ \dfrac{6}{ \dfrac{6-3c+b}{9} } }=11\\\\\\\\\
 \dfrac{3c+4b}{6} \times \dfrac{9}{6-3c+b}=11\\\\\\\\\
   \dfrac{3c+4b}{2} \times \dfrac{3}{6-3c+b}=11\\\\\\\\
 \dfrac{9c+12b}{12-6c+2b}=11\\\\\\\
9c+12b=132-66c+22b\\\\\\\
9c+66c+12b-22b=132\\\\\\
75c-10b=132\\\\\\

Vamos agora substituir a equação 1 na equação 2 encontrar o valor de c.

Equacao~~i\\\\\\\
b=16+c\\\\\\



75c-10(16+c)=132\\\\\
75c-160-10c=132\\\\\\
75c-10c=132+160\\\\\\
65c=292\\\\\\\
c= \dfrac{292}{65}

Agora o valor de b

b=16+c\\\\\\\
b=16+ \frac{292}{65}\\\\\\
65b=1040+292\\\\\\
65b=1332\\\\\
b= \dfrac{1332}{65}

\boxed{Resposta: b= \dfrac{1332}{65}~~e~~c= \dfrac{292}{65}}

Bom dia!
Bons estudos!


Perguntas interessantes