Matemática, perguntado por paolamendes123, 10 meses atrás

simplifique os radicais
 \sqrt{245}
 \sqrt{200}
 \sqrt{98}
 \sqrt[3]{250}
 \sqrt[5]{243}
 \sqrt[3]{ - 64}
 \sqrt[10]{5120}

Soluções para a tarefa

Respondido por ShinyComet
1

\sqrt{245}=\sqrt{5\times 7^{2}}=7\sqrt{5}

\sqrt{200}=\sqrt{2^{3}\times 5^{2}}=\sqrt{2\times 2^{2}\times 5^{2}}=2\times 5\sqrt{2}=10\sqrt{2}

\sqrt{98}=\sqrt{2\times 7^{2}}=7\sqrt{2}

\sqrt[3]{250}=\sqrt[3]{2\times 5^{3}}=5\sqrt[3]{2}

\sqrt[5]{243}=\sqrt[5]{3^{5}}=3

\sqrt[3]{-64}=\sqrt[3]{-1\times 2^{6}}=\sqrt[3]{-1}\times \sqrt[3]{2^{3}\times 2^{3}}=-1\times 2\times 2=-4

\sqrt[10]{5120}=\sqrt[10]{2^{10}\times 5}=2\sqrt[10]{5}

Perguntas interessantes