Matemática, perguntado por thayna434, 8 meses atrás

simplifique: a)(n+1)!-n! b) (n+2)+(n+1)! / (n+1)!=​

Soluções para a tarefa

Respondido por Lliw01
2

Resposta:

\boxed{\boxed{\mathbf{a)\,\,n\cdot n!}}}

\boxed{\boxed{\mathbf{b)\,\,n+3}}}

Solução:

Sabendo que n!=n(n-1)(n-2)(n-3)..., a cada termo você subtrai 1 do fatorial anterior, de posse disso, segue que

a)

(n+1)!-n!\\\\\\=(n+1)(n+1-1)!-n!\\\\\\=(n+1)n!-n!\\\\\\=n\cdot n!+\not\!\!{n!}-\not\!\!{n!}\\\\\\=n\cdot n!

b)

\dfrac{(n+2)!+(n+1)!}{(n+1)!}\\\\\\=\dfrac{(n+2)!}{(n+1)!}+\dfrac{(n+1)!}{(n+1)!}\\\\\\=\dfrac{(n+2)(n+2-1)!}{(n+1)!}+\dfrac{(n+1)!}{(n+1)!}\\\\\\=\dfrac{(n+2)(n+1)!}{(n+1)!}+\dfrac{(n+1)!}{(n+1)!}\quad\mbox{simplificando}\,\,\, (n+1)!\\\\\\=(n+2)+1\\\\\\=n+3

Para saber mais: https://brainly.com.br/tarefa/39929108


thayna434: obrigado
Perguntas interessantes