Matemática, perguntado por eloisafelizola, 1 ano atrás

Sendo tgx + cotgx = 5/2, calcule sen2x

Soluções para a tarefa

Respondido por Joao0Neves
1

Resposta:

\boxed{\sin(2x) = \frac{4}{5}}

Explicação passo-a-passo:

\tan(x) + \cot(x) = \frac{5}{2}

\frac{\sin(x)}{\cos(x)} + \frac{\cos(x)}{\sin(x)} = \frac{5}{2}

\frac{\sin(x)\sin(x)}{\cos(x)\sin(x)} + \frac{\cos(x)\cos(x)}{\cos(x)\sin(x)} = \frac{5}{2}

\frac{\sin^2(x)}{\cos(x)\sin(x)} + \frac{\cos^2(x)}{\cos(x)\sin(x)} = \frac{5}{2}

\frac{\sin^2(x)+\cos^2(x)}{\cos(x)\sin(x)} = \frac{5}{2}

\frac{1}{\cos(x)\sin(x)} = \frac{5}{2}

\frac{1}{\frac{1}{2}\sin(2x)} = \frac{5}{2}

2 = \frac{5}{2}\sin(2x)

4 = 5\sin(2x)

\boxed{\sin(2x) = \frac{4}{5}}

Identidades úteis:

1) \cos^2x+\sin^2x = 1

2) \tan x = \frac{\sin x}{\cos x}

3) \cot x = \frac{\cos x}{\sin x}

4) \cos x \sin x = \frac{1}{2}\sin 2x

Perguntas interessantes