Matemática, perguntado por anacisouzam, 1 ano atrás

sendo log2=a e log3=b , determine o log de 54

Soluções para a tarefa

Respondido por mrclsaraiva
3
Sendo log2=a e log3=b , determine o log de 54:

Vamos fatorar o 54 assim:

54 | 3 -
18 | 3  | Juntando os 3, teremos 3x3x3 = 
 3^{3}
  6 | 3 -
  2 | 2
  1 | -
Nossa fatoração deu = 
 3^{3} . 2

Então: 

 Log{54} = Log {3^{3}.2} Quando temos multiplicação dentro do log, podemos separar em dois Logs diferentes somando:

Log3^{3} + Log2 Quando temos dentro de um Log um expoente, podemos tirar o mesmo multiplicando o Log:

3 . Log3 + Log2 Agora só substituir os valores:

3 . b + a ⇒ 3b+a
Perguntas interessantes