Matemática, perguntado por Joaovictoripiraja, 1 ano atrás

Sendo k = binomial de a sobre b; m= binomial de a sobre b+1;n = binomial de a sobre b+2. Utilize a relação de Stiffel e determine o valor do binomial de a+2 sobre b+2 utilizando as incógnitas acima.

Soluções para a tarefa

Respondido por hcsmalves
3
  k=\left(\begin{array}{ccc}a\\b\\\end{array}\right) ; m= \left(\begin{array}{ccc}a\\b+1\\\end{array}\right);n=  \left(\begin{array}{ccc}a\\b+2\\\end{array}\right) \\  \\ k+m=  \left(\begin{array}{ccc}a\\b\\\end{array}\right)+  \left(\begin{array}{ccc}a\\b+1\\\end{array}\right)=  \left(\begin{array}{ccc}a+1\\b+1\\\end{array}\right) \\  \\ m+n=  \left(\begin{array}{ccc}a\\b+1\\\end{array}\right)+  \left(\begin{array}{ccc}a\\b+2\\\end{array}\right)=[tex]  \left(\begin{array}{ccc}a+1\\b+2\\\end{array}\right)  \\  \\ (k+m)+(m+n)=  \left(\begin{array}{ccc}a+1\\b+1\\\end{array}\right)+  \left(\begin{array}{ccc}a+1\\b+2\\\end{array}\right)= \left(\begin{array}{ccc}a+2\\b+2\\\end{array}\right)

Logo:   \left(\begin{array}{ccc}a+2\\b+2\\\end{array}\right)=2m+k+n

hcsmalves: Desconsidere o sinal [tex] na terceira linha.
Joaovictoripiraja: Ok, Muito obrigado!
Joaovictoripiraja: Parabéns pelo título de moderador!
hcsmalves: Obrigado.
Perguntas interessantes