Matemática, perguntado por mateusfilisbin0, 1 ano atrás

sendo A= 1024/ raiz cubica de 256 e B= 1/64 o valor de log na base 2 ^a+ log na base 2 ^b

Soluções para a tarefa

Respondido por Niiya
4
a = 1024/\sqrt[3]{256}
a=2^{10}/\sqrt[3]{2^{8}}
a=2^{10}/(2^{8/3})
a=2^{(10 - [8/3])}
a=2^{(30-8)/3)
a=2^{22/3}

b=1/64
b=1/2^{6}
b=2^{-6}

log_{2}(a) + log_{2}(b) = log_{2}(a*b)
log_{2}(a) + log_{2}(b) = log_{2}(2^{22/3}*2^{-6})
log_{2}(a) + log_{2}(b) = log_{2}(2^{([22/3] - 6)})
log_{2}(a) + log_{2}(b) = log_{2}(2^{([22-18]/3)})
log_{2}(a) + log_{2}(b) = log_{2}(2^{(4/3)})
log_{2}(a) + log_{2}(b) = (4/3)*log_{2}(2)
log_{2}(a) + log_{2}(b) = (4/3)*1
log_{2}(a) + log_{2}(b) = 4/3

mateusfilisbin0: Obrigadooo!!!!
Perguntas interessantes