Sendo α = 30º, β = 60º e Ɣ as medidas dos ângulos internos de
um triângulo, cujo perímetro é igual a 12u.c., pode-se afirmar
que o menor lado desse triângulo mede, em unidades de
comprimento:
Soluções para a tarefa
Respondido por
1
Observe a figura em anexo. Os ângulos deste triângulo são
![\alpha=30^{\circ};\;\beta=60^{\circ};\;\gamma=90^{\circ}. \alpha=30^{\circ};\;\beta=60^{\circ};\;\gamma=90^{\circ}.](https://tex.z-dn.net/?f=%5Calpha%3D30%5E%7B%5Ccirc%7D%3B%5C%3B%5Cbeta%3D60%5E%7B%5Ccirc%7D%3B%5C%3B%5Cgamma%3D90%5E%7B%5Ccirc%7D.)
Então, temos um triângulo retângulo, onde
a hipotenusa mede![x, x,](https://tex.z-dn.net/?f=x%2C)
a base mede![x\cdot \cos 30^{\circ}; x\cdot \cos 30^{\circ};](https://tex.z-dn.net/?f=x%5Ccdot+%5Ccos+30%5E%7B%5Ccirc%7D%3B)
a altura mede![x\cdot \mathrm{sen\,}30^{\circ}. x\cdot \mathrm{sen\,}30^{\circ}.](https://tex.z-dn.net/?f=x%5Ccdot+%5Cmathrm%7Bsen%5C%2C%7D30%5E%7B%5Ccirc%7D.)
Como o perímetro é
devemos ter
![x+\dfrac{x}{2}+\dfrac{x\sqrt{3}}{2}=12\\ \\ \dfrac{2x+x+x\sqrt{3}}{2}=12\\ \\ \\ \dfrac{3x+x\sqrt{3}}{2}=12\\ \\ \\ \dfrac{(3+\sqrt{3})\,x}{2}=12\\ \\ \\ (3+\sqrt{3})\,x=2\cdot 12\\ \\ (3+\sqrt{3})\,x=24\\ \\ x=\dfrac{24}{3+\sqrt{3}}\\ \\ \\ x=\dfrac{24\,(3-\sqrt{3})}{(3+\sqrt{3})\,(3-\sqrt{3})}\\ \\ \\ x=\dfrac{24\,(3-\sqrt{3})}{9-3}\\ \\ \\ x=\dfrac{24\,(3-\sqrt{3})}{6}\\ \\ \\ x=4\,(3-\sqrt{3}) \text{ u.c.} x+\dfrac{x}{2}+\dfrac{x\sqrt{3}}{2}=12\\ \\ \dfrac{2x+x+x\sqrt{3}}{2}=12\\ \\ \\ \dfrac{3x+x\sqrt{3}}{2}=12\\ \\ \\ \dfrac{(3+\sqrt{3})\,x}{2}=12\\ \\ \\ (3+\sqrt{3})\,x=2\cdot 12\\ \\ (3+\sqrt{3})\,x=24\\ \\ x=\dfrac{24}{3+\sqrt{3}}\\ \\ \\ x=\dfrac{24\,(3-\sqrt{3})}{(3+\sqrt{3})\,(3-\sqrt{3})}\\ \\ \\ x=\dfrac{24\,(3-\sqrt{3})}{9-3}\\ \\ \\ x=\dfrac{24\,(3-\sqrt{3})}{6}\\ \\ \\ x=4\,(3-\sqrt{3}) \text{ u.c.}](https://tex.z-dn.net/?f=x%2B%5Cdfrac%7Bx%7D%7B2%7D%2B%5Cdfrac%7Bx%5Csqrt%7B3%7D%7D%7B2%7D%3D12%5C%5C+%5C%5C+%5Cdfrac%7B2x%2Bx%2Bx%5Csqrt%7B3%7D%7D%7B2%7D%3D12%5C%5C+%5C%5C+%5C%5C+%5Cdfrac%7B3x%2Bx%5Csqrt%7B3%7D%7D%7B2%7D%3D12%5C%5C+%5C%5C+%5C%5C+%5Cdfrac%7B%283%2B%5Csqrt%7B3%7D%29%5C%2Cx%7D%7B2%7D%3D12%5C%5C+%5C%5C+%5C%5C+%283%2B%5Csqrt%7B3%7D%29%5C%2Cx%3D2%5Ccdot+12%5C%5C+%5C%5C+%283%2B%5Csqrt%7B3%7D%29%5C%2Cx%3D24%5C%5C+%5C%5C+x%3D%5Cdfrac%7B24%7D%7B3%2B%5Csqrt%7B3%7D%7D%5C%5C+%5C%5C+%5C%5C+x%3D%5Cdfrac%7B24%5C%2C%283-%5Csqrt%7B3%7D%29%7D%7B%283%2B%5Csqrt%7B3%7D%29%5C%2C%283-%5Csqrt%7B3%7D%29%7D%5C%5C+%5C%5C+%5C%5C+x%3D%5Cdfrac%7B24%5C%2C%283-%5Csqrt%7B3%7D%29%7D%7B9-3%7D%5C%5C+%5C%5C+%5C%5C+x%3D%5Cdfrac%7B24%5C%2C%283-%5Csqrt%7B3%7D%29%7D%7B6%7D%5C%5C+%5C%5C+%5C%5C+x%3D4%5C%2C%283-%5Csqrt%7B3%7D%29+%5Ctext%7B+u.c.%7D)
O menor lado é o lado oposto ao ângulo de![30^{\circ}: 30^{\circ}:](https://tex.z-dn.net/?f=30%5E%7B%5Ccirc%7D%3A)
![\dfrac{x}{2}\\ \\ =\dfrac{4\,(3-\sqrt{3})}{2}\\ \\ \\ =\boxed{\begin{array}{c}2\,(3-\sqrt{3})\text{ u.c.} \end{array}} \dfrac{x}{2}\\ \\ =\dfrac{4\,(3-\sqrt{3})}{2}\\ \\ \\ =\boxed{\begin{array}{c}2\,(3-\sqrt{3})\text{ u.c.} \end{array}}](https://tex.z-dn.net/?f=%5Cdfrac%7Bx%7D%7B2%7D%5C%5C+%5C%5C+%3D%5Cdfrac%7B4%5C%2C%283-%5Csqrt%7B3%7D%29%7D%7B2%7D%5C%5C+%5C%5C+%5C%5C+%3D%5Cboxed%7B%5Cbegin%7Barray%7D%7Bc%7D2%5C%2C%283-%5Csqrt%7B3%7D%29%5Ctext%7B+u.c.%7D+%5Cend%7Barray%7D%7D)
Então, temos um triângulo retângulo, onde
a hipotenusa mede
a base mede
a altura mede
Como o perímetro é
O menor lado é o lado oposto ao ângulo de
Anexos:
![](https://pt-static.z-dn.net/files/dc8/ff0cd6f5ebf6b82e0e314f4e1846c7f8.png)
Lukyo:
A resposta foi editada. Atualize a página para visualizar...
Perguntas interessantes