Matemática, perguntado por llllllllllllllllll20, 6 meses atrás

Sendo √3 . tg x = 1 , com π/2 < x < 3π/2 , determine cos^2 x


Soluções para a tarefa

Respondido por niltonjunior20oss764
0

\mathrm{Seja}\ x\in\left]\dfrac{\pi}{2},\dfrac{3\pi}{2}\right[\ \mathrm{tal\ que}\ \sqrt{3}\tan{x}=1.

\mathrm{\acute{E}\ preciso\ determinar}\ \cos^2{x}.

\mathrm{Primeiramente, determinaremos}\ \tan{x}.

\sqrt{3}\tan{x}=1\Longrightarrow \tan{x}=\dfrac{1}{\sqrt{3}}

\mathrm{Agora,\ \acute{e}\ poss\acute{\i}vel\ isolar}\ \sin{x}\ \mathrm{na\ express\tilde{a}o}\text{:}

\dfrac{\sin{x}}{\cos{x}}=\dfrac{1}{\sqrt{3}}\Longrightarrow \sin{x}=\dfrac{\cos{x}}{\sqrt{3}}

\mathrm{Podemos\ calcular}\ \cos^2{x}\ \mathrm{da\ seguinte\ maneira}\text{:}

\sin^2{x}+\cos^2{x}=1\Longrightarrow \bigg(\dfrac{\cos{x}}{\sqrt{3}}\bigg)^2+\cos^2{x}=1

\Longrightarrow \dfrac{\cos^2{x}}{3}+\dfrac{3\cos^2{x}}{3}=1\Longrightarrow \dfrac{4\cos^2{x}}{3}=1

\Longrightarrow \boxed{\cos^2{x}=\dfrac{3}{4}}

Perguntas interessantes