sen(x + y) + sen(x -y)
Soluções para a tarefa
Respondido por
0
Fórmula de prostaférese (transformação de soma em produto):
![\boxed{\begin{array}{c}\mathrm{sen\,}p+\mathrm{sen\,}q=2\,\mathrm{sen}\!\left(\dfrac{p+q}{2} \right )\!\cos\!\left(\dfrac{p-q}{2} \right ) \end{array}} \boxed{\begin{array}{c}\mathrm{sen\,}p+\mathrm{sen\,}q=2\,\mathrm{sen}\!\left(\dfrac{p+q}{2} \right )\!\cos\!\left(\dfrac{p-q}{2} \right ) \end{array}}](https://tex.z-dn.net/?f=%5Cboxed%7B%5Cbegin%7Barray%7D%7Bc%7D%5Cmathrm%7Bsen%5C%2C%7Dp%2B%5Cmathrm%7Bsen%5C%2C%7Dq%3D2%5C%2C%5Cmathrm%7Bsen%7D%5C%21%5Cleft%28%5Cdfrac%7Bp%2Bq%7D%7B2%7D+%5Cright+%29%5C%21%5Ccos%5C%21%5Cleft%28%5Cdfrac%7Bp-q%7D%7B2%7D+%5Cright+%29+%5Cend%7Barray%7D%7D)
Usando a fórmula acima, com
![p=x+y~~\text{ e }~~q=x-y p=x+y~~\text{ e }~~q=x-y](https://tex.z-dn.net/?f=p%3Dx%2By%7E%7E%5Ctext%7B+e+%7D%7E%7Eq%3Dx-y)
temos,
![\mathrm{sen}(x+y)+\mathrm{sen}(x-y)=2\,\mathrm{sen}\!\left(\dfrac{(x+y)+(x-y)}{2} \right )\!\cos\!\left(\dfrac{(x+y)-(x-y)}{2} \right )\\\\\\ =2\,\mathrm{sen}\!\left(\dfrac{x+\diagup\!\!\!\! y+x-\diagup\!\!\!\! y}{2} \right )\!\cos\!\left(\dfrac{\diagup\!\!\!\! x+y-\diagup\!\!\!\! x+y}{2} \right )\\\\\\ =2\,\mathrm{sen}\!\left(\dfrac{\diagup\!\!\!\! 2x}{\diagup\!\!\!\! 2}\right)\cos\left(\dfrac{\diagup\!\!\!\! 2y}{\diagup\!\!\!\! 2} \right)\\\\\\ =\boxed{\begin{array}{c}2\,\mathrm{sen\,}x\cos y \end{array}} \mathrm{sen}(x+y)+\mathrm{sen}(x-y)=2\,\mathrm{sen}\!\left(\dfrac{(x+y)+(x-y)}{2} \right )\!\cos\!\left(\dfrac{(x+y)-(x-y)}{2} \right )\\\\\\ =2\,\mathrm{sen}\!\left(\dfrac{x+\diagup\!\!\!\! y+x-\diagup\!\!\!\! y}{2} \right )\!\cos\!\left(\dfrac{\diagup\!\!\!\! x+y-\diagup\!\!\!\! x+y}{2} \right )\\\\\\ =2\,\mathrm{sen}\!\left(\dfrac{\diagup\!\!\!\! 2x}{\diagup\!\!\!\! 2}\right)\cos\left(\dfrac{\diagup\!\!\!\! 2y}{\diagup\!\!\!\! 2} \right)\\\\\\ =\boxed{\begin{array}{c}2\,\mathrm{sen\,}x\cos y \end{array}}](https://tex.z-dn.net/?f=%5Cmathrm%7Bsen%7D%28x%2By%29%2B%5Cmathrm%7Bsen%7D%28x-y%29%3D2%5C%2C%5Cmathrm%7Bsen%7D%5C%21%5Cleft%28%5Cdfrac%7B%28x%2By%29%2B%28x-y%29%7D%7B2%7D+%5Cright+%29%5C%21%5Ccos%5C%21%5Cleft%28%5Cdfrac%7B%28x%2By%29-%28x-y%29%7D%7B2%7D+%5Cright+%29%5C%5C%5C%5C%5C%5C+%3D2%5C%2C%5Cmathrm%7Bsen%7D%5C%21%5Cleft%28%5Cdfrac%7Bx%2B%5Cdiagup%5C%21%5C%21%5C%21%5C%21+y%2Bx-%5Cdiagup%5C%21%5C%21%5C%21%5C%21+y%7D%7B2%7D+%5Cright+%29%5C%21%5Ccos%5C%21%5Cleft%28%5Cdfrac%7B%5Cdiagup%5C%21%5C%21%5C%21%5C%21+x%2By-%5Cdiagup%5C%21%5C%21%5C%21%5C%21+x%2By%7D%7B2%7D+%5Cright+%29%5C%5C%5C%5C%5C%5C+%3D2%5C%2C%5Cmathrm%7Bsen%7D%5C%21%5Cleft%28%5Cdfrac%7B%5Cdiagup%5C%21%5C%21%5C%21%5C%21+2x%7D%7B%5Cdiagup%5C%21%5C%21%5C%21%5C%21+2%7D%5Cright%29%5Ccos%5Cleft%28%5Cdfrac%7B%5Cdiagup%5C%21%5C%21%5C%21%5C%21+2y%7D%7B%5Cdiagup%5C%21%5C%21%5C%21%5C%21+2%7D+%5Cright%29%5C%5C%5C%5C%5C%5C+%3D%5Cboxed%7B%5Cbegin%7Barray%7D%7Bc%7D2%5C%2C%5Cmathrm%7Bsen%5C%2C%7Dx%5Ccos+y+%5Cend%7Barray%7D%7D)
Bons estudos! :-)
Usando a fórmula acima, com
temos,
Bons estudos! :-)
Perguntas interessantes
Português,
1 ano atrás
História,
1 ano atrás
Biologia,
1 ano atrás
Matemática,
1 ano atrás
Biologia,
1 ano atrás
Matemática,
1 ano atrás
Biologia,
1 ano atrás