Matemática, perguntado por mgmoreira2000p2kbrr, 1 ano atrás

sen beta = 4/5 e beta pertence 2ºquadrante, calcule cos(2beta).

Soluções para a tarefa

Respondido por robertocarlos5otivr9
1
Pela relação fundamental da trigonometria:

\text{sen}^2\beta+\text{cos}^2\beta=1~\hookrightarrow~\left(\dfrac{4}{5}\right)^2+\text{cos}^2\beta=1~\hookrightarrow~\dfrac{16}{25}+\text{cos}^2\beta=1

\text{cos}^2\beta=1-\dfrac{16}{25}~\hookrightarrow~\text{cos}^2\beta=\dfrac{25-16}{25}~\hookrightarrow~\text{cos}^2\beta=\dfrac{9}{25}

Como \beta pertence ao 2^{\circ} quadrante, temos que \text{cos}~\beta<0 

\text{cos}^2\beta=\dfrac{9}{25}~\hookrightarrow~\text{cos}~\beta=-\sqrt{\dfrac{9}{25}}~\hookrightarrow~\text{cos}~\beta=-\dfrac{3}{5}

Lembre-se que:

\text{cos}~2\beta=\text{cos}^2\beta-\text{sen}^2\beta

Logo:

\text{cos}~2\beta=\left(-\dfrac{3}{5}\right)^2-\left(\dfrac{4}{5}\right)^2~\hookrightarrow~\text{cos}~2\beta=\dfrac{9}{25}-\dfrac{16}{25}~\hookrightarrow~\boxed{\text{cos}~2\beta=-\dfrac{7}{25}}
Perguntas interessantes