Seja uma função afim do tipo f(x) = a.x + b. Determine o valor de f(15), sabendo que f(1) = 3 e f(4) = 12.
preciso urgente!!
Soluções para a tarefa
Resposta:
Explicação passo a passo:
Vejamos:
x+b = 3 (*-1)
4x+b= 12
-x-b= -3.
Somando teremos:
3x= 9 >> x= 3.
Assim b= 0.
Logo,
F(15) = 15*3 = 45.
Resposta:
f(15) = 45
Explicação passo a passo:
Sabendo que a função segue uma função afim, substituimos os dois pontos conhecidos na estrutura da função:
f(1) = 3
3 = a*1 + b
3 = a + b (I)
f(4) = 12
12 = a*4 + b
12 = 4a + b (II)
Forma-se um sistema de equações com as equações I e II, temos:
3 = a + b *(-1)
12 = 4a + b
Multiplicando a equação I por -1 para possibilitar o cancelamento do b.
-3 = -a - b
12 = 4a + b
Cortamos o "b" e somamos o restante da equação
-3 + 12 = -a + 4a
9 = 3a
a = 9/3
a = 3
Já temos o valor de "a". Para descobrir o b, temos que substituir em uma das equações:
(I): 3 = 3*1 + b
b = 3 - 3
b = 0
Portanto, achamos a função: f(x) = 3x
f(15) = 3 * 15
f(15) = 45