Seja u = (1, 3). Determine as coordenadas de um vetor v, de norma 3, e que faz um ângulo de 30º com u.
Soluções para a tarefa
Respondido por
0
Utilizaremos la siguiente matriz de rotación
![R_\theta=\left[\begin{matrix}
\cos \theta& \sin \theta\\
-\sin \theta& \cos \theta
\end{matrix}\right] R_\theta=\left[\begin{matrix}
\cos \theta& \sin \theta\\
-\sin \theta& \cos \theta
\end{matrix}\right]](https://tex.z-dn.net/?f=R_%5Ctheta%3D%5Cleft%5B%5Cbegin%7Bmatrix%7D%0A%5Ccos+%5Ctheta%26amp%3B+%5Csin+%5Ctheta%5C%5C%0A-%5Csin+%5Ctheta%26amp%3B+%5Ccos+%5Ctheta%0A%5Cend%7Bmatrix%7D%5Cright%5D)
Rotación de 30°
![R_{30}=\left[\begin{matrix} \cos 30& \sin 30\\ -\sin 30& \cos 30 \end{matrix}\right]\\ \\ \\
R_{30}=\left[\begin{matrix} \sqrt{3}/2& 1/2\\ -1/2& \sqrt{3}/2 \end{matrix}\right]\\ \\ R_{30}=\left[\begin{matrix} \cos 30& \sin 30\\ -\sin 30& \cos 30 \end{matrix}\right]\\ \\ \\
R_{30}=\left[\begin{matrix} \sqrt{3}/2& 1/2\\ -1/2& \sqrt{3}/2 \end{matrix}\right]\\ \\](https://tex.z-dn.net/?f=R_%7B30%7D%3D%5Cleft%5B%5Cbegin%7Bmatrix%7D+%5Ccos+30%26amp%3B+%5Csin+30%5C%5C+-%5Csin+30%26amp%3B+%5Ccos+30+%5Cend%7Bmatrix%7D%5Cright%5D%5C%5C+%5C%5C+%5C%5C%0AR_%7B30%7D%3D%5Cleft%5B%5Cbegin%7Bmatrix%7D+%5Csqrt%7B3%7D%2F2%26amp%3B+1%2F2%5C%5C+-1%2F2%26amp%3B+%5Csqrt%7B3%7D%2F2+%5Cend%7Bmatrix%7D%5Cright%5D%5C%5C+%5C%5C)
Entonces para rotar al vector u = (1,3) le aplicamos la matriz de rotación de esta forma
![u_{30}=\left[\begin{matrix} \sqrt{3}/2& 1/2\\ -1/2& \sqrt{3}/2 \end{matrix}\right]\left[\begin{matrix} 1\\ 3 \end{matrix}\right]\\ \\ \\
u_{30}=\left(\dfrac{\sqrt{3}+3}{2}\,,\,\dfrac{3\sqrt{3}-1}{2}\right)\\ \\ u_{30}=\left[\begin{matrix} \sqrt{3}/2& 1/2\\ -1/2& \sqrt{3}/2 \end{matrix}\right]\left[\begin{matrix} 1\\ 3 \end{matrix}\right]\\ \\ \\
u_{30}=\left(\dfrac{\sqrt{3}+3}{2}\,,\,\dfrac{3\sqrt{3}-1}{2}\right)\\ \\](https://tex.z-dn.net/?f=u_%7B30%7D%3D%5Cleft%5B%5Cbegin%7Bmatrix%7D+%5Csqrt%7B3%7D%2F2%26amp%3B+1%2F2%5C%5C+-1%2F2%26amp%3B+%5Csqrt%7B3%7D%2F2+%5Cend%7Bmatrix%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Bmatrix%7D+1%5C%5C+3+%5Cend%7Bmatrix%7D%5Cright%5D%5C%5C+%5C%5C+%5C%5C%0Au_%7B30%7D%3D%5Cleft%28%5Cdfrac%7B%5Csqrt%7B3%7D%2B3%7D%7B2%7D%5C%2C%2C%5C%2C%5Cdfrac%7B3%5Csqrt%7B3%7D-1%7D%7B2%7D%5Cright%29%5C%5C+%5C%5C)
luego hallemos el vector unitario de
:

Y por último el vector de norma 3 es

Rotación de 30°
Entonces para rotar al vector u = (1,3) le aplicamos la matriz de rotación de esta forma
luego hallemos el vector unitario de
Y por último el vector de norma 3 es
Perguntas interessantes
Biologia,
1 ano atrás
História,
1 ano atrás
Física,
1 ano atrás
História,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Biologia,
1 ano atrás
Matemática,
1 ano atrás