Matemática, perguntado por mariribeiro, 1 ano atrás

 Seja (AB) o diâmetro de circunferência x² y² - 6x - 8y+24 = 0 contido na reta perpendicular a y = x+ 7. calcule as coordenadas de A e B.

Soluções para a tarefa

Respondido por Tiririca
31
***** veja se não é x² + y² ... etc.. na circunferencia (como está, não é eq. de circunf)
a reta perpendicular que contem AB é y = -x + 7
y² = (-x + 7)²
y² = x² + 49 - 14x subst. y² e y na equação da circunferencia temos :
x² + y² - 6x - 8y+24 = 0

x² + (x² + 49 - 14x) - 6x - 8(-x+7) + 24 = 0
2x² - 12y + 17 = 0
delta = 12² - 4.2.17 = 8
Xa = (12 + √8) / 2.2 = (6+√2)/2
Ya = -Xa + 7 ==> Ya = (8 -
√2)/2
Xb= (12 - √8) / 2.2 = (6-√2)/2
Yb = -Xb + 7 ==> Yb = (8 +
√2)/2








Respondido por silvageeh
12

Os pontos A e B são A = (3 - 1/√2, 4 + 1/√2) e B = (3 + 1/√2, 4 - 1/√2).

Primeiramente, vamos determinar a equação reduzida da circunferência x² + y² - 6x - 8y + 24 = 0.

Para isso, precisamos completar quadrado:

x² - 6x + 9 + y² - 8y + 16 = -24 + 9 + 16

(x - 3)² + (y - 4)² = 1.

Portanto, a circunferência está no centro C = (3,4) e possui raio 1.

Agora, vamos determinar a equação da reta perpendicular à y = x + 7.

Observe que podemos escrever essa equação da forma x - y = -7.

A reta perpendicular será da forma x + y = c.

Substituindo o centro da circunferência, obtemos:

3 + 4 = c

c = 7.

Logo, a reta perpendicular é x + y = 7.

Considerando que y = -x + 7, vamos substituir esse valor de y na equação reduzida da circunferência:

(x - 3)² + (-x + 7 - 4)² = 1

x² - 6x + 9 + (-x + 3)² = 1

x² - 6x + 9 + x² - 6x + 9 = 1

2x² - 12x + 17 = 0.

Utilizando a fórmula de Bhaskara para resolver a equação do segundo grau acima, obtemos os valores para x: 3 - 1/√2 e 3 + 1/√2.

Se x = 3 - 1/√2, então y = 4 + 1/√2.

Se x = 3 + 1/√2, então y = 4 - 1/√2.

Portanto, A = (3 - 1/√2, 4 + 1/√2) e B = (3 + 1/√2, 4 - 1/√2).

Para mais informações sobre circunferência, acesse: https://brainly.com.br/tarefa/19260176

Anexos:
Perguntas interessantes