Matemática, perguntado por samuelhenriquesjp6, 8 meses atrás

Sebe-se que o
   \sin( \alpha  )  =  \frac{ \sqrt{2} }{3}  \: e \: que \: 0 \leqslant  \alpha   \leqslant  \frac{\pi}{2}   \: determine \: a) \cos( \alpha )  \: e \: b) \tan( \alpha )
Por favor URGENTE​

Soluções para a tarefa

Respondido por ReijiAkaba
1

Vamos usar a relação trigonométrica fundamental:

\sin^{2}\alpha+\cos^2 \alpha=1\\\\\bigg( \dfrac{\sqrt{2} }{3} \bigg) ^2+\cos^2 \alpha=1\\\\ \dfrac{2}{9}+\cos^2 \alpha=1\\\\\cos^2 \alpha=1- \dfrac{2}{9}\\\\\cos^2 \alpha=\dfrac{7}{9} \\\\\cos \alpha=\dfrac{\sqrt{7}}{3}

\tan \alpha =\dfrac{\sin \alpha }{\cos \alpha } \\\\\tan \alpha =\dfrac{\frac{\sqrt{2} }{3} }{\frac{\sqrt{7} }{3} } \\\\\tan \alpha =\dfrac{\sqrt{2} }{3} \cdot\dfrac{3}{\sqrt{7}} \\\\\tan \alpha =\dfrac{\sqrt{2} }{\sqrt{7}} \cdot\dfrac{\sqrt{7}}{\sqrt{7}} \\\\\tan \alpha =\dfrac{\sqrt{14} }{7}

Perguntas interessantes