Se as dimensões de um paralelepípedo reto retângulo de volume 15 estão em progressão aritmética e a maior delas é 3, qual a soma dessas dimensões?
RESOLUÇÃO COM EXPLICAÇÃO POR FAVOR!!!
Soluções para a tarefa
Respondido por
21
De uma PA, sabemos que:
![\boxed{a_2=\frac{a_1+a_3}{2}} \boxed{a_2=\frac{a_1+a_3}{2}}](https://tex.z-dn.net/?f=%5Cboxed%7Ba_2%3D%5Cfrac%7Ba_1%2Ba_3%7D%7B2%7D%7D)
Vamos dizer que:
![a_1=a\\ a_2=b\\ a_3=c=3 a_1=a\\ a_2=b\\ a_3=c=3](https://tex.z-dn.net/?f=a_1%3Da%5C%5C+a_2%3Db%5C%5C+a_3%3Dc%3D3)
Então
![\boxed{b= \frac{a+3}{2}} \boxed{b= \frac{a+3}{2}}](https://tex.z-dn.net/?f=%5Cboxed%7Bb%3D+%5Cfrac%7Ba%2B3%7D%7B2%7D%7D)
Recordando a fórmula de volume:
![\boxed{V=abc}\\\\ 15=a*(\frac{a+3}{2})*3\\\\ 15 = 3a(\frac{a+3}{2})\\\\ \frac{15}{3}=a(\frac{a+3}{2})\\\\ 5=a(\frac{a+3}{2})\\\\ 5=\frac{a^2+3a}{2}\\\\ 10=a^2+3a\\\\ a^2+3a-10=0 \boxed{V=abc}\\\\ 15=a*(\frac{a+3}{2})*3\\\\ 15 = 3a(\frac{a+3}{2})\\\\ \frac{15}{3}=a(\frac{a+3}{2})\\\\ 5=a(\frac{a+3}{2})\\\\ 5=\frac{a^2+3a}{2}\\\\ 10=a^2+3a\\\\ a^2+3a-10=0](https://tex.z-dn.net/?f=%5Cboxed%7BV%3Dabc%7D%5C%5C%5C%5C+15%3Da%2A%28%5Cfrac%7Ba%2B3%7D%7B2%7D%29%2A3%5C%5C%5C%5C+15+%3D+3a%28%5Cfrac%7Ba%2B3%7D%7B2%7D%29%5C%5C%5C%5C+%5Cfrac%7B15%7D%7B3%7D%3Da%28%5Cfrac%7Ba%2B3%7D%7B2%7D%29%5C%5C%5C%5C+5%3Da%28%5Cfrac%7Ba%2B3%7D%7B2%7D%29%5C%5C%5C%5C+5%3D%5Cfrac%7Ba%5E2%2B3a%7D%7B2%7D%5C%5C%5C%5C+10%3Da%5E2%2B3a%5C%5C%5C%5C+a%5E2%2B3a-10%3D0)
![\Delta=3^2-4(1)(-10)\\\\ \Delta=9+40\\\\ \boxed{\Delta=49}\\\\ x'=\frac{-3+7}{2}=\frac{4}{2}=2\\\\ x''=\frac{-3-7}{2}=\frac{-10}{2}=-5\ \rightarrow\ nao\ entra\ na\ solucao \Delta=3^2-4(1)(-10)\\\\ \Delta=9+40\\\\ \boxed{\Delta=49}\\\\ x'=\frac{-3+7}{2}=\frac{4}{2}=2\\\\ x''=\frac{-3-7}{2}=\frac{-10}{2}=-5\ \rightarrow\ nao\ entra\ na\ solucao](https://tex.z-dn.net/?f=%5CDelta%3D3%5E2-4%281%29%28-10%29%5C%5C%5C%5C+%5CDelta%3D9%2B40%5C%5C%5C%5C+%5Cboxed%7B%5CDelta%3D49%7D%5C%5C%5C%5C+x%27%3D%5Cfrac%7B-3%2B7%7D%7B2%7D%3D%5Cfrac%7B4%7D%7B2%7D%3D2%5C%5C%5C%5C+x%27%27%3D%5Cfrac%7B-3-7%7D%7B2%7D%3D%5Cfrac%7B-10%7D%7B2%7D%3D-5%5C+%5Crightarrow%5C+nao%5C+entra%5C+na%5C+solucao)
Portanto, sabemos que "a" vale 2.
![a+b+c=2+\frac{2+3}{2}+3\\\\ a+b+c=2+2,5+3\\\\ \boxed{a+b+c=7,5\ ou\ \frac{15}{2}} a+b+c=2+\frac{2+3}{2}+3\\\\ a+b+c=2+2,5+3\\\\ \boxed{a+b+c=7,5\ ou\ \frac{15}{2}}](https://tex.z-dn.net/?f=a%2Bb%2Bc%3D2%2B%5Cfrac%7B2%2B3%7D%7B2%7D%2B3%5C%5C%5C%5C+a%2Bb%2Bc%3D2%2B2%2C5%2B3%5C%5C%5C%5C+%5Cboxed%7Ba%2Bb%2Bc%3D7%2C5%5C+ou%5C+%5Cfrac%7B15%7D%7B2%7D%7D)
Vamos dizer que:
Então
Recordando a fórmula de volume:
Portanto, sabemos que "a" vale 2.
arthurhyn:
Muito obrigado, resolução muito bem organizada e bem explica!!!
Perguntas interessantes
Matemática,
1 ano atrás
Lógica,
1 ano atrás
Administração,
1 ano atrás
Matemática,
1 ano atrás
Química,
1 ano atrás
Química,
1 ano atrás