Matemática, perguntado por livinhasouzah, 1 ano atrás

se A = X² - 2,determine o valor de A³-3A=1

Soluções para a tarefa

Respondido por EnzoGabriel
1
A = (x^2-2)

A^3-3*A=1 \\ (x^2-2)^3-3*(x^2-2)=1

O cubo da diferença pode ser expresso por (a-b)^3 = a^3-3a^2b+3ab^2-b^3.

(x^2-2)^3 = (x^2)^3-3*(x^2)^2*2+3*x^2*(2)^2-(2)^3 \\ (x^2-2)^3 = x^6 - 6x^4 + 12x^2-8

-3*(x^2-2) = -3x^2+6

Substituindo na expressão, teremos que:

(x^2-2)^3-3*(x^2-2)=1 \\ x^6 - 6x^4 + 12x^2-8 -3x^2+6 = 1 \\ x^6-6x^4 + 9x^2-2 = 1 \\ x^6-6x^4+9x^2 -3 = 0
Perguntas interessantes