Sabendo-se que log2=0,30, log3=0,48 e 12^x=15^y, então a razão x/y é igual a
Soluções para a tarefa
Respondido por
32
Propriedades utilizadas:
![\boxed{\boxed{log_{x}(a\cdot b\cdot c\cdot...\cdot z)=log_{x}(a)+log_{x}(b)+...+log_{x}(z)}}\\\\\\\boxed{\boxed{log_{x}\left(\dfrac{a}{b}\right)=log_{x}(a)-log_{x}(b)}}\\\\\\\boxed{\boxed{log(10)=log_{10}(10)=1}} \boxed{\boxed{log_{x}(a\cdot b\cdot c\cdot...\cdot z)=log_{x}(a)+log_{x}(b)+...+log_{x}(z)}}\\\\\\\boxed{\boxed{log_{x}\left(\dfrac{a}{b}\right)=log_{x}(a)-log_{x}(b)}}\\\\\\\boxed{\boxed{log(10)=log_{10}(10)=1}}](https://tex.z-dn.net/?f=%5Cboxed%7B%5Cboxed%7Blog_%7Bx%7D%28a%5Ccdot+b%5Ccdot+c%5Ccdot...%5Ccdot+z%29%3Dlog_%7Bx%7D%28a%29%2Blog_%7Bx%7D%28b%29%2B...%2Blog_%7Bx%7D%28z%29%7D%7D%5C%5C%5C%5C%5C%5C%5Cboxed%7B%5Cboxed%7Blog_%7Bx%7D%5Cleft%28%5Cdfrac%7Ba%7D%7Bb%7D%5Cright%29%3Dlog_%7Bx%7D%28a%29-log_%7Bx%7D%28b%29%7D%7D%5C%5C%5C%5C%5C%5C%5Cboxed%7B%5Cboxed%7Blog%2810%29%3Dlog_%7B10%7D%2810%29%3D1%7D%7D)
______________________________
![12^{x}=15^{y} 12^{x}=15^{y}](https://tex.z-dn.net/?f=12%5E%7Bx%7D%3D15%5E%7By%7D)
Aplicando log (base 10) nos dois lados da equação:
![log(12^{x})=log(15^{y})\\\\x\cdot log(12)=y\cdot log(15)\\\\x\cdot log(3\cdot2\cdot2)=y\cdot log(3\cdot\frac{10}{2})\\\\x\cdot\left[log(3)+log(2)+log(2)\right]=y\cdot\left[log(3)+log(10)-log(2)\right]\\\\x\cdot(0,48+0,3+0,3)=y\cdot(0,48+1-0,3)\\\\x\cdot1,08=y\cdot1,18 log(12^{x})=log(15^{y})\\\\x\cdot log(12)=y\cdot log(15)\\\\x\cdot log(3\cdot2\cdot2)=y\cdot log(3\cdot\frac{10}{2})\\\\x\cdot\left[log(3)+log(2)+log(2)\right]=y\cdot\left[log(3)+log(10)-log(2)\right]\\\\x\cdot(0,48+0,3+0,3)=y\cdot(0,48+1-0,3)\\\\x\cdot1,08=y\cdot1,18](https://tex.z-dn.net/?f=log%2812%5E%7Bx%7D%29%3Dlog%2815%5E%7By%7D%29%5C%5C%5C%5Cx%5Ccdot+log%2812%29%3Dy%5Ccdot+log%2815%29%5C%5C%5C%5Cx%5Ccdot+log%283%5Ccdot2%5Ccdot2%29%3Dy%5Ccdot+log%283%5Ccdot%5Cfrac%7B10%7D%7B2%7D%29%5C%5C%5C%5Cx%5Ccdot%5Cleft%5Blog%283%29%2Blog%282%29%2Blog%282%29%5Cright%5D%3Dy%5Ccdot%5Cleft%5Blog%283%29%2Blog%2810%29-log%282%29%5Cright%5D%5C%5C%5C%5Cx%5Ccdot%280%2C48%2B0%2C3%2B0%2C3%29%3Dy%5Ccdot%280%2C48%2B1-0%2C3%29%5C%5C%5C%5Cx%5Ccdot1%2C08%3Dy%5Ccdot1%2C18)
Então:
![\dfrac{x}{y}=\dfrac{1,18}{1,08}\\\\\\\dfrac{x}{y}=\dfrac{118}{108}\\\\\\\boxed{\boxed{\dfrac{x}{y}=\dfrac{59}{54}}} \dfrac{x}{y}=\dfrac{1,18}{1,08}\\\\\\\dfrac{x}{y}=\dfrac{118}{108}\\\\\\\boxed{\boxed{\dfrac{x}{y}=\dfrac{59}{54}}}](https://tex.z-dn.net/?f=%5Cdfrac%7Bx%7D%7By%7D%3D%5Cdfrac%7B1%2C18%7D%7B1%2C08%7D%5C%5C%5C%5C%5C%5C%5Cdfrac%7Bx%7D%7By%7D%3D%5Cdfrac%7B118%7D%7B108%7D%5C%5C%5C%5C%5C%5C%5Cboxed%7B%5Cboxed%7B%5Cdfrac%7Bx%7D%7By%7D%3D%5Cdfrac%7B59%7D%7B54%7D%7D%7D)
______________________________
Aplicando log (base 10) nos dois lados da equação:
Então:
CarolineCardine:
Opa! Valeu. eu consegui seguir sua linha de raciocínio. Mas no final ouve um pequeno erro. 59/54.
Perguntas interessantes
Inglês,
1 ano atrás
Ed. Física,
1 ano atrás
Matemática,
1 ano atrás
Português,
1 ano atrás
Biologia,
1 ano atrás
Química,
1 ano atrás
Física,
1 ano atrás