Sabendo que P (x) = x^3 - 2x^2 + 1 , f (x) = x^3 - 3x^2 + 3 e g (×) = P (x) - f (x) , determine o polonomio g (x) e, a seguir , encontre g (2)
Soluções para a tarefa
Respondido por
4
P(x) - f(x) = x^3 - 2x^2 +1 - (x^3 - 3x^2 + 3)
P(x) - f(x) = x^3 - 2x^2 +1 - x^3 + 3x^2 - 3
Organizando os termos:
P(x) - f(x) = x^3 - x^3 - 2x^2 + 3x^2 +1 - 3
P(x) = f(x) = x^2 - 2 = g(x)
Achamos g(x) agora é só substituir o x pelo 2:
g(2) = 2^2 - 2 = 2
P(x) - f(x) = x^3 - 2x^2 +1 - x^3 + 3x^2 - 3
Organizando os termos:
P(x) - f(x) = x^3 - x^3 - 2x^2 + 3x^2 +1 - 3
P(x) = f(x) = x^2 - 2 = g(x)
Achamos g(x) agora é só substituir o x pelo 2:
g(2) = 2^2 - 2 = 2
Perguntas interessantes
Matemática,
9 meses atrás
Artes,
9 meses atrás
História,
9 meses atrás
Português,
1 ano atrás
Matemática,
1 ano atrás
Química,
1 ano atrás
Matemática,
1 ano atrás