Sabendo que as coordenadas X e Y são (x,0) calcule X
F(x)=㏒ₓ4+㏒₄x-5/2
Soluções para a tarefa
Respondido por
2
Olá Spawwn.
Propriedades logarítmicas usadas:
![\star~~\boxed{\boxed{\mathsf{\ell og_ba=c\Rightarrow b^c=a}}}\\\\\\\\\star~~\boxed{\boxed{\mathsf{\ell og_ab\Rightarrow\dfrac{\ell og_cb}{\ell og_ca}}}} \star~~\boxed{\boxed{\mathsf{\ell og_ba=c\Rightarrow b^c=a}}}\\\\\\\\\star~~\boxed{\boxed{\mathsf{\ell og_ab\Rightarrow\dfrac{\ell og_cb}{\ell og_ca}}}}](https://tex.z-dn.net/?f=%5Cstar%7E%7E%5Cboxed%7B%5Cboxed%7B%5Cmathsf%7B%5Cell+og_ba%3Dc%5CRightarrow+b%5Ec%3Da%7D%7D%7D%5C%5C%5C%5C%5C%5C%5C%5C%5Cstar%7E%7E%5Cboxed%7B%5Cboxed%7B%5Cmathsf%7B%5Cell+og_ab%5CRightarrow%5Cdfrac%7B%5Cell+og_cb%7D%7B%5Cell+og_ca%7D%7D%7D%7D)
Organizando e resolvendo a equação:
![\mathsf{f(x)=y=\ell og_x4+\ell og_4x-\dfrac{5}{2}}\\\\\\\mathsf{0=\ell og_x4+\ell og_4x-\dfrac{5}{2}~~~\gets~~~~(x,0)}\\\\\\\underline{\qquad\qquad\qquad\qquad\qquad}\\\\\\\mathsf{\star~~\ell og_x4=\dfrac{\ell og_44}{\ell og_4x}\Rightarrow \dfrac{1}{\ell og_4x}}\\\\\\\mathsf{\star~~\ell og_4a=\dfrac{5}{2}~\Rightarrow 4^{\frac{5}{2}}=a~\Rightarrow (2^2)^\frac{5}{2}=a~\Rightarrow 2^5=a~\Rightarrow 32 = a}\\\\\\\underline{\qquad\qquad\qquad\qquad\qquad} \mathsf{f(x)=y=\ell og_x4+\ell og_4x-\dfrac{5}{2}}\\\\\\\mathsf{0=\ell og_x4+\ell og_4x-\dfrac{5}{2}~~~\gets~~~~(x,0)}\\\\\\\underline{\qquad\qquad\qquad\qquad\qquad}\\\\\\\mathsf{\star~~\ell og_x4=\dfrac{\ell og_44}{\ell og_4x}\Rightarrow \dfrac{1}{\ell og_4x}}\\\\\\\mathsf{\star~~\ell og_4a=\dfrac{5}{2}~\Rightarrow 4^{\frac{5}{2}}=a~\Rightarrow (2^2)^\frac{5}{2}=a~\Rightarrow 2^5=a~\Rightarrow 32 = a}\\\\\\\underline{\qquad\qquad\qquad\qquad\qquad}](https://tex.z-dn.net/?f=%5Cmathsf%7Bf%28x%29%3Dy%3D%5Cell+og_x4%2B%5Cell+og_4x-%5Cdfrac%7B5%7D%7B2%7D%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7B0%3D%5Cell+og_x4%2B%5Cell+og_4x-%5Cdfrac%7B5%7D%7B2%7D%7E%7E%7E%5Cgets%7E%7E%7E%7E%28x%2C0%29%7D%5C%5C%5C%5C%5C%5C%5Cunderline%7B%5Cqquad%5Cqquad%5Cqquad%5Cqquad%5Cqquad%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7B%5Cstar%7E%7E%5Cell+og_x4%3D%5Cdfrac%7B%5Cell+og_44%7D%7B%5Cell+og_4x%7D%5CRightarrow+%5Cdfrac%7B1%7D%7B%5Cell+og_4x%7D%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7B%5Cstar%7E%7E%5Cell+og_4a%3D%5Cdfrac%7B5%7D%7B2%7D%7E%5CRightarrow+4%5E%7B%5Cfrac%7B5%7D%7B2%7D%7D%3Da%7E%5CRightarrow+%282%5E2%29%5E%5Cfrac%7B5%7D%7B2%7D%3Da%7E%5CRightarrow+2%5E5%3Da%7E%5CRightarrow+32+%3D+a%7D%5C%5C%5C%5C%5C%5C%5Cunderline%7B%5Cqquad%5Cqquad%5Cqquad%5Cqquad%5Cqquad%7D)
![\mathsf{0=\dfrac{1}{\ell og_4x}+\ell og_4x-\ell og_432~\cdot(\ell og_4x)}\\\\\\\mathsf{0=1+(\ell og_4x)^2-\ell og_432\cdot \ell og_4x}\\\\\mathsf{(\ell og_4x)^2-\ell og_432\cdot \ell og_4x+\ell og_44=0~~\gets~~organizando.}\\\\\\\\\mathsf{\Delta=(\ell og_432)^2-4\cdot 1\cdot\ell og_44}\\\\\mathsf{\Delta=\Big(\dfrac{5}{2}\Big)^2-4}\\\\\mathsf{\Delta=\dfrac{25-16}{4}}\\\\\mathsf{\Delta=\dfrac{9}{4}}\\\\\mathsf{\Delta=\Big(\dfrac{3}{2}\Big)^2} \mathsf{0=\dfrac{1}{\ell og_4x}+\ell og_4x-\ell og_432~\cdot(\ell og_4x)}\\\\\\\mathsf{0=1+(\ell og_4x)^2-\ell og_432\cdot \ell og_4x}\\\\\mathsf{(\ell og_4x)^2-\ell og_432\cdot \ell og_4x+\ell og_44=0~~\gets~~organizando.}\\\\\\\\\mathsf{\Delta=(\ell og_432)^2-4\cdot 1\cdot\ell og_44}\\\\\mathsf{\Delta=\Big(\dfrac{5}{2}\Big)^2-4}\\\\\mathsf{\Delta=\dfrac{25-16}{4}}\\\\\mathsf{\Delta=\dfrac{9}{4}}\\\\\mathsf{\Delta=\Big(\dfrac{3}{2}\Big)^2}](https://tex.z-dn.net/?f=%5Cmathsf%7B0%3D%5Cdfrac%7B1%7D%7B%5Cell+og_4x%7D%2B%5Cell+og_4x-%5Cell+og_432%7E%5Ccdot%28%5Cell+og_4x%29%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7B0%3D1%2B%28%5Cell+og_4x%29%5E2-%5Cell+og_432%5Ccdot+%5Cell+og_4x%7D%5C%5C%5C%5C%5Cmathsf%7B%28%5Cell+og_4x%29%5E2-%5Cell+og_432%5Ccdot+%5Cell+og_4x%2B%5Cell+og_44%3D0%7E%7E%5Cgets%7E%7Eorganizando.%7D%5C%5C%5C%5C%5C%5C%5C%5C%5Cmathsf%7B%5CDelta%3D%28%5Cell+og_432%29%5E2-4%5Ccdot+1%5Ccdot%5Cell+og_44%7D%5C%5C%5C%5C%5Cmathsf%7B%5CDelta%3D%5CBig%28%5Cdfrac%7B5%7D%7B2%7D%5CBig%29%5E2-4%7D%5C%5C%5C%5C%5Cmathsf%7B%5CDelta%3D%5Cdfrac%7B25-16%7D%7B4%7D%7D%5C%5C%5C%5C%5Cmathsf%7B%5CDelta%3D%5Cdfrac%7B9%7D%7B4%7D%7D%5C%5C%5C%5C%5Cmathsf%7B%5CDelta%3D%5CBig%28%5Cdfrac%7B3%7D%7B2%7D%5CBig%29%5E2%7D)
![\mathsf{\ell og_4x=\dfrac{-\Big(-\dfrac{5}{2}\Big)\pm\sqrt{\Big(\dfrac{3}{2}\Big)^2}}{2\cdot 1}}\\\\\\\mathsf{\ell og_4x^+=\dfrac{\dfrac{5}{2}+\dfrac{3}{2}}{2}\qquad\qquad\qquad\qquad \ell og_4x^-=\dfrac{\dfrac{5}{2}-\dfrac{3}{2}}{2}}\\\\\\\\\mathsf{\ell og_4x^+=\dfrac{\diagdown\!\!\!\!8}{\diagdown\!\!\!\!2}\cdot\dfrac{1}{2}\qquad\qquad\qquad\qquad~~\ell og_4x^-=\dfrac{\diagup\!\!\!\!2}{\diagup\!\!\!\!2}\cdot\dfrac{1}{2}}\\\\\\\\\mathsf{\ell og_4x^+=2\qquad\qquad\qquad\qquad\qquad\ell og_4x^-=\dfrac{1}{2}} \mathsf{\ell og_4x=\dfrac{-\Big(-\dfrac{5}{2}\Big)\pm\sqrt{\Big(\dfrac{3}{2}\Big)^2}}{2\cdot 1}}\\\\\\\mathsf{\ell og_4x^+=\dfrac{\dfrac{5}{2}+\dfrac{3}{2}}{2}\qquad\qquad\qquad\qquad \ell og_4x^-=\dfrac{\dfrac{5}{2}-\dfrac{3}{2}}{2}}\\\\\\\\\mathsf{\ell og_4x^+=\dfrac{\diagdown\!\!\!\!8}{\diagdown\!\!\!\!2}\cdot\dfrac{1}{2}\qquad\qquad\qquad\qquad~~\ell og_4x^-=\dfrac{\diagup\!\!\!\!2}{\diagup\!\!\!\!2}\cdot\dfrac{1}{2}}\\\\\\\\\mathsf{\ell og_4x^+=2\qquad\qquad\qquad\qquad\qquad\ell og_4x^-=\dfrac{1}{2}}](https://tex.z-dn.net/?f=%5Cmathsf%7B%5Cell+og_4x%3D%5Cdfrac%7B-%5CBig%28-%5Cdfrac%7B5%7D%7B2%7D%5CBig%29%5Cpm%5Csqrt%7B%5CBig%28%5Cdfrac%7B3%7D%7B2%7D%5CBig%29%5E2%7D%7D%7B2%5Ccdot+1%7D%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7B%5Cell+og_4x%5E%2B%3D%5Cdfrac%7B%5Cdfrac%7B5%7D%7B2%7D%2B%5Cdfrac%7B3%7D%7B2%7D%7D%7B2%7D%5Cqquad%5Cqquad%5Cqquad%5Cqquad+%5Cell+og_4x%5E-%3D%5Cdfrac%7B%5Cdfrac%7B5%7D%7B2%7D-%5Cdfrac%7B3%7D%7B2%7D%7D%7B2%7D%7D%5C%5C%5C%5C%5C%5C%5C%5C%5Cmathsf%7B%5Cell+og_4x%5E%2B%3D%5Cdfrac%7B%5Cdiagdown%5C%21%5C%21%5C%21%5C%218%7D%7B%5Cdiagdown%5C%21%5C%21%5C%21%5C%212%7D%5Ccdot%5Cdfrac%7B1%7D%7B2%7D%5Cqquad%5Cqquad%5Cqquad%5Cqquad%7E%7E%5Cell+og_4x%5E-%3D%5Cdfrac%7B%5Cdiagup%5C%21%5C%21%5C%21%5C%212%7D%7B%5Cdiagup%5C%21%5C%21%5C%21%5C%212%7D%5Ccdot%5Cdfrac%7B1%7D%7B2%7D%7D%5C%5C%5C%5C%5C%5C%5C%5C%5Cmathsf%7B%5Cell+og_4x%5E%2B%3D2%5Cqquad%5Cqquad%5Cqquad%5Cqquad%5Cqquad%5Cell+og_4x%5E-%3D%5Cdfrac%7B1%7D%7B2%7D%7D)
![\mathsf{\ell og_4x=2\Rightarrow 4^2=x\Rightarrow \boxed{\mathsf{16 = x}}}\\\\\\\mathsf{\ell og_4x=\dfrac{1}{2}\Rightarrow 4^{\frac{1}{2}}=x\Rightarrow \boxed{\mathsf{2=x}}} \mathsf{\ell og_4x=2\Rightarrow 4^2=x\Rightarrow \boxed{\mathsf{16 = x}}}\\\\\\\mathsf{\ell og_4x=\dfrac{1}{2}\Rightarrow 4^{\frac{1}{2}}=x\Rightarrow \boxed{\mathsf{2=x}}}](https://tex.z-dn.net/?f=%5Cmathsf%7B%5Cell+og_4x%3D2%5CRightarrow+4%5E2%3Dx%5CRightarrow+%5Cboxed%7B%5Cmathsf%7B16+%3D+x%7D%7D%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7B%5Cell+og_4x%3D%5Cdfrac%7B1%7D%7B2%7D%5CRightarrow+4%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%3Dx%5CRightarrow+%5Cboxed%7B%5Cmathsf%7B2%3Dx%7D%7D%7D)
Solução do par ordenado é (2, 0) ou (16, 0).
Dúvidas? comente.
Propriedades logarítmicas usadas:
Organizando e resolvendo a equação:
Solução do par ordenado é (2, 0) ou (16, 0).
Dúvidas? comente.
Nooel:
OBG :)
Perguntas interessantes