Matemática, perguntado por Verônica13467, 1 ano atrás

Sabendo que a soma dos cinco primeiros termos de uma P.A. é 60 e a soma dos 8 primeiros é 90. Calcule o valor do sétimo termo dessa progressão.

Soluções para a tarefa

Respondido por exalunosp
17
S5  = 60
S8 = 90


5( a1 + a5)/2 = 60
5(a1 + a5) =   120
5(a1 + a1 + 4r )= 120
5(2a1 + 4r) = 120
10a1 + 20r = 120   
a1 + 2r = 12 ***** (  1 )

S8 = 8( a1 + a8 )/2
90 = 8 ( a1 + a1 + 7r)/2
180 = 8 ( 2a1 + 7r )
16a1 + 56r = 180
4a1 + 14r =  45 *****  ( 2 )

 a1 +  2r =   12  ( vezes  - 4 )
4a1 + 14r = 45
-----------------------
-4a1 - 8r  = - 48
 4a1 + 14r = 45
-------------------------
//          6r  = -3
r =  -3/6 =  - 1/2 ***

a1 + 2r = 12
a1 + 2 ( - 1/2) = 12
a1 -  1 = 12
a1 = 12 + 1 = 13 ****

a1 + 6r =  13 + 6 ( - 1/2) = 13 - 3 = 10 ****** Resposta de sétimo termo


Verônica13467: Muito obrigada!!
Respondido por BetShammah
16
Dados:

\displaystyle \mathsf{S_5 = 60}\\
\displaystyle \mathsf{S_8 = 90}\\
\displaystyle \mathsf{a_7 = \: ?}

Cálculo:

\displaystyle \mathsf{S_5}\\ \\
\displaystyle \mathsf{a1 = \: ?}\\
\displaystyle \mathsf{n = 5}\\
\displaystyle \mathsf{r = \: ?}\\
\displaystyle \mathsf{a5 = \: ?}\\
\displaystyle \mathsf{S_5 = 60}

\displaystyle \mathsf{a_n = a_1 + (n - 1).r}\\
\displaystyle \mathsf{a_5 = a_1 + (5 - 1).r}\\
\displaystyle \mathsf{a_5 = a_1 + 4r}\\ \\

\displaystyle \mathsf{S_n = \frac{(a_1+a_n).n}{2} }\\ \\
\displaystyle \mathsf{S_5 = \frac{(a_1 + a_5).5}{2}}\\ \\
\displaystyle \mathsf{60 = \frac{(a_1 + a_1 + 4r).5}{2}}\\ \\
\displaystyle \mathsf{60 = \frac{(2a_1 + 4r).5}{2}} \\ \\
\displaystyle \mathsf{60.2 = (2a_1 + 4r).5} \\
\displaystyle \mathsf{(2a_1 + 4r).5 = 120}\\
\displaystyle \mathsf{2a_1 + 4r = \frac{120}{5}}\\
\displaystyle \mathsf{2a_1 + 4r = 24 \div 2}\\
\displaystyle \boxed{\mathsf{a_1 + 2r = 12}}\\

\displaystyle \mathsf{S_8}\\ \\
\displaystyle \mathsf{a_1 = \: ?}\\
\displaystyle \mathsf{n = \: 8}\\
\displaystyle \mathsf{r = \: ?}\\
\displaystyle \mathsf{a_8 = \: ?}\\
\displaystyle \mathsf{S_8 = 90 }\\

\displaystyle \mathsf{a_n = a_1 + (n - 1).r}\\
\displaystyle \mathsf{a_8 = a_1 + (8 - 1).r}\\
\displaystyle \mathsf{a_8 = a_1 + 7r}\\

\displaystyle \mathsf{S_n = \frac{(a_1 + a_n).n}{2}}\\ \\
\displaystyle \mathsf{S_8 = \frac{(a_1 + a_8).8}{2}}\\ \\
\displaystyle \mathsf{90 = \frac{(a_1 + a_1 + 7r).8}{2}}\\
\displaystyle \mathsf{4.(2a_1 + 7r) = 90}\\
\displaystyle \mathsf{8a_1 + 28r = 90 \div 2}\\
\displaystyle \mathsf{4a_1 + 14r = 45 }\\
\displaystyle \mathsf{}\\
 
Sistema de equações:

\displaystyle \mathsf{ \left \{ {{a_1 + 2r = 12} \atop {4a_1 + 14r = 45}} \right. }\\ \\ \\
\displaystyle \mathsf{a_1 = 12 - 2r }\\
\displaystyle \mathsf{4a_1 + 14r = 45}\\
\displaystyle \mathsf{4(12 - 2r) + 14r = 45}\\
\displaystyle \mathsf{48 - 8r + 14r = 45}\\
\displaystyle \mathsf{48 + 6r = 45}\\
\displaystyle \mathsf{6r = 45 - 48}\\
\displaystyle \mathsf{6r = -3}\\
\displaystyle \mathsf{r = \frac{-3}{6} = \frac{-1}{2}}\\ \\

\displaystyle \mathsf{a_1 + 2r = 12}\\
\displaystyle \mathsf{a_1 + 2(\frac{-1}{2})= 12}
\displaystyle \mathsf{a_1 + 2r = 12}\\
\displaystyle \mathsf{a_1 - 1= 12}\\
\displaystyle \mathsf{a_1 = 12 + 1}\\
\displaystyle \mathsf{a_1 = 13}\\

\displaystyle \mathsf{a_n = a_1 + (n - 1).r}\\
\displaystyle \mathsf{a_7 = 13 + (7 - 1).(\frac{-1}{2})}\\
\displaystyle \mathsf{a_7 = 13 - 3}\\
\displaystyle \mathsf{a_7 = 10}\\

RodrigoLago: Obrigado.
BetShammah: Por nada! ^-^
Perguntas interessantes