Sabe-se que sen(3π / 7) = p. Calcule sen(4π / 7)
a) 2p
b) p
c) 3p
d) 4p
2) Sabendo que cos(x)=4/5 e x é um ângulo do 4º quadrante, calcule sen(x) a) - 1/2
b) - 1/5
c) - 5/2
d) - 3/5
Soluções para a tarefa
Respondido por
52
Resposta:
2) letra D -3/5
Explicação passo-a-passo:
Respondido por
65
O valor do é b) p; O valor do sen(x) é d) .
Questão 1
Observe que . Então, vamos utilizar a definição do seno da diferença:
- sen(x + y) = sen(x).cos(y) + sen(y).cos(x).
Sendo assim, temos que:
.
O enunciado nos diz que . Além disso, vale lembrar que sen(π) = 0 e cos(π) = -1.
Portanto, podemos afirmar que:
.
Alternativa correta: letra b).
Questão 2
A relação fundamental da trigonometria nos diz que:
- sen²(x) + cos²(x) = 1.
Se , então o valor do seno é:
.
Veja que encontramos dois valores para o seno. Mas, o enunciado nos informa que o ângulo pertence ao quarto quadrante e nele o seno é negativo.
Portanto, .
Alternativa correta: letra d).
Perguntas interessantes
Química,
7 meses atrás
Matemática,
7 meses atrás
História,
7 meses atrás
História,
9 meses atrás
História,
9 meses atrás
Português,
1 ano atrás
Biologia,
1 ano atrás
Matemática,
1 ano atrás