Matemática, perguntado por marcosviniciusmatias, 5 meses atrás

Sabe-se que em uma P.A. o a1+a2 =18 e a3+ a6=54. Calcule o valor da soma dos 10 primeiros termos dessa P.A. ​

Soluções para a tarefa

Respondido por auditsys
1

Resposta:

\textsf{Leia abaixo}

Explicação passo a passo:

\mathsf{a_1 + a_2 = 18}

\mathsf{a_1 + a_1 + r = 18}

\mathsf{2a_1 + r = 18}

\mathsf{a_3 + a_6 = 54}

\mathsf{a_3 + a_3 + 3r = 54}

\mathsf{2a_3 + 3r = 54}

\mathsf{2(a_1 + 2r) + 3r = 54}

\mathsf{2a_1 + 4r + 3r = 54}

\mathsf{2a_1 + 7r = 54}

\mathsf{18 - r = 54 - 7r}

\mathsf{6r = 36}

\mathsf{r = 6}

\mathsf{2a_1 + 6 = 18}

\mathsf{2a_1 = 12}

\mathsf{a_1 = 6}

\mathsf{a_n = a_1 + (n - 1)r}

\mathsf{a_{10} = 6 + (10 - 1)6}

\mathsf{a_{10} = 6 + (9)6}

\mathsf{a_{10} = 6 + 54}

\mathsf{a_{10} = 60}

\mathsf{S_{10} = \dfrac{(a_1 + a_n)n}{2}}

\mathsf{S_{10} = \dfrac{(6 + 60)10}{2}}

\mathsf{S_{10} = \dfrac{(66)10}{2}}

\mathsf{S_{10} = \dfrac{660}{2}}

\boxed{\boxed{\mathsf{S_{10} = 330}}}

Perguntas interessantes