Resolvendo a integral a seguir por meio de coordenadas polares ∫ ∫ (x²+y²)^(5/2)dA, onde R é a região limitada pelo circulo de raio 1.
Soluções para a tarefa
Respondido por
1
Assumindo que o círculo do enunciado tenha centro na origem, a região de integração é
![R=\left\{(x,\,y)\in \mathbb{R}^{2}\left|\,x^{2}+y^{2} \leq 1\right.\} R=\left\{(x,\,y)\in \mathbb{R}^{2}\left|\,x^{2}+y^{2} \leq 1\right.\}](https://tex.z-dn.net/?f=R%3D%5Cleft%5C%7B%28x%2C%5C%2Cy%29%5Cin+%5Cmathbb%7BR%7D%5E%7B2%7D%5Cleft%7C%5C%2Cx%5E%7B2%7D%2By%5E%7B2%7D+%5Cleq+1%5Cright.%5C%7D)
E queremos calcular
![\displaystyle\int\int\limits_{R}{(x^{2}+y^{2})^{5/2}\,dy\,dx} \displaystyle\int\int\limits_{R}{(x^{2}+y^{2})^{5/2}\,dy\,dx}](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Cint%5Cint%5Climits_%7BR%7D%7B%28x%5E%7B2%7D%2By%5E%7B2%7D%29%5E%7B5%2F2%7D%5C%2Cdy%5C%2Cdx%7D)
Mudança para coordenadas polares:
![\left\{\begin{array}{l} x=r\cos \theta\\ y=r\,\mathrm{sen\,} \theta \end{array} \right.\\ \\ \\ |\text{Jac\,}\phi|=r \left\{\begin{array}{l} x=r\cos \theta\\ y=r\,\mathrm{sen\,} \theta \end{array} \right.\\ \\ \\ |\text{Jac\,}\phi|=r](https://tex.z-dn.net/?f=%5Cleft%5C%7B%5Cbegin%7Barray%7D%7Bl%7D+x%3Dr%5Ccos+%5Ctheta%5C%5C+y%3Dr%5C%2C%5Cmathrm%7Bsen%5C%2C%7D+%5Ctheta+%5Cend%7Barray%7D+%5Cright.%5C%5C+%5C%5C+%5C%5C+%7C%5Ctext%7BJac%5C%2C%7D%5Cphi%7C%3Dr)
A função a ser integrada fica:
![f(x,\,y)=(x^{2}+y^{2})^{5/2}\\ \\ =(r^{2})^{5/2}\\ \\ =r^{5} f(x,\,y)=(x^{2}+y^{2})^{5/2}\\ \\ =(r^{2})^{5/2}\\ \\ =r^{5}](https://tex.z-dn.net/?f=f%28x%2C%5C%2Cy%29%3D%28x%5E%7B2%7D%2By%5E%7B2%7D%29%5E%7B5%2F2%7D%5C%5C+%5C%5C+%3D%28r%5E%7B2%7D%29%5E%7B5%2F2%7D%5C%5C+%5C%5C+%3Dr%5E%7B5%7D)
Os novos limites para a região de integração são:
![0\leq \theta \leq 2\pi\\ \\ 0\leq r\leq 1 0\leq \theta \leq 2\pi\\ \\ 0\leq r\leq 1](https://tex.z-dn.net/?f=0%5Cleq+%5Ctheta+%5Cleq+2%5Cpi%5C%5C+%5C%5C+0%5Cleq+r%5Cleq+1)
Substituindo na integral, temos
![\displaystyle\int\limits_{0}^{2\pi}\int\limits_{0}^{1}{r^{5}\cdot |\text{Jac\,}\phi|\,dr\,d\theta}\\ \\ \\ =\displaystyle\int\limits_{0}^{2\pi}\int\limits_{0}^{1}{r^{5}\cdot r\,dr\,d\theta}\\ \\ \\ =\displaystyle\int\limits_{0}^{2\pi}\int\limits_{0}^{1}{r^{6}\,dr\,d\theta}\\ \\ \\ =\displaystyle\int\limits_{0}^{2\pi}\left.\left(\dfrac{r^{7}}{7} \right )\right|_{0}^{1}\,d \theta\\ \\ \\ =\displaystyle\int\limits_{0}^{2\pi}\dfrac{1}{7}\,d \theta\\ \\ \\ =\left.\dfrac{\theta}{7}\right|_{0}^{2\pi}\\ \\ \\ =\dfrac{2\pi}{7} \displaystyle\int\limits_{0}^{2\pi}\int\limits_{0}^{1}{r^{5}\cdot |\text{Jac\,}\phi|\,dr\,d\theta}\\ \\ \\ =\displaystyle\int\limits_{0}^{2\pi}\int\limits_{0}^{1}{r^{5}\cdot r\,dr\,d\theta}\\ \\ \\ =\displaystyle\int\limits_{0}^{2\pi}\int\limits_{0}^{1}{r^{6}\,dr\,d\theta}\\ \\ \\ =\displaystyle\int\limits_{0}^{2\pi}\left.\left(\dfrac{r^{7}}{7} \right )\right|_{0}^{1}\,d \theta\\ \\ \\ =\displaystyle\int\limits_{0}^{2\pi}\dfrac{1}{7}\,d \theta\\ \\ \\ =\left.\dfrac{\theta}{7}\right|_{0}^{2\pi}\\ \\ \\ =\dfrac{2\pi}{7}](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Cint%5Climits_%7B0%7D%5E%7B2%5Cpi%7D%5Cint%5Climits_%7B0%7D%5E%7B1%7D%7Br%5E%7B5%7D%5Ccdot+%7C%5Ctext%7BJac%5C%2C%7D%5Cphi%7C%5C%2Cdr%5C%2Cd%5Ctheta%7D%5C%5C+%5C%5C+%5C%5C+%3D%5Cdisplaystyle%5Cint%5Climits_%7B0%7D%5E%7B2%5Cpi%7D%5Cint%5Climits_%7B0%7D%5E%7B1%7D%7Br%5E%7B5%7D%5Ccdot+r%5C%2Cdr%5C%2Cd%5Ctheta%7D%5C%5C+%5C%5C+%5C%5C+%3D%5Cdisplaystyle%5Cint%5Climits_%7B0%7D%5E%7B2%5Cpi%7D%5Cint%5Climits_%7B0%7D%5E%7B1%7D%7Br%5E%7B6%7D%5C%2Cdr%5C%2Cd%5Ctheta%7D%5C%5C+%5C%5C+%5C%5C+%3D%5Cdisplaystyle%5Cint%5Climits_%7B0%7D%5E%7B2%5Cpi%7D%5Cleft.%5Cleft%28%5Cdfrac%7Br%5E%7B7%7D%7D%7B7%7D+%5Cright+%29%5Cright%7C_%7B0%7D%5E%7B1%7D%5C%2Cd+%5Ctheta%5C%5C+%5C%5C+%5C%5C+%3D%5Cdisplaystyle%5Cint%5Climits_%7B0%7D%5E%7B2%5Cpi%7D%5Cdfrac%7B1%7D%7B7%7D%5C%2Cd+%5Ctheta%5C%5C+%5C%5C+%5C%5C+%3D%5Cleft.%5Cdfrac%7B%5Ctheta%7D%7B7%7D%5Cright%7C_%7B0%7D%5E%7B2%5Cpi%7D%5C%5C+%5C%5C+%5C%5C+%3D%5Cdfrac%7B2%5Cpi%7D%7B7%7D)
E queremos calcular
A função a ser integrada fica:
Os novos limites para a região de integração são:
Substituindo na integral, temos
Perguntas interessantes