resolvendo a equação 2x + 5 < - 3x + 40 achei
Soluções para a tarefa
Resposta:
Uma inequação do 1° grau na incógnita x é qualquer expressão do 1° grau que pode ser escrita numa das seguintes formas:
ax + b > 0;
ax + b < 0;
ax + b ≥ 0;
ax + b ≤ 0.
Onde a, b são números reais com a ≠ 0.
Exemplos:
-2x + 7 > 0
x - 10 ≤ 0
2x + 5 ≤ 0
12 - x < 0
Resolvendo uma inequação de 1° grau
Uma maneira simples de resolver uma inequação do 1° grau é isolarmos a incógnita x em um dos membros. Observe dois exemplos:
Exemplo 1: -2x + 7 > 0
Solução:
-2x > -7
Multiplicando por (-1)
2x < 7
x < 7/2
Portanto a solução da inequação é x < 7/2.
Exemplo 2: 2x - 6 < 0
Solução:
2x < 6
x < 6/2
x < 3
Portanto a solução da inequação e x < 3
Pode-se resolver qualquer inequação do 1° grau por meio do estudo do sinal de uma função do 1° grau, com o seguinte procedimento:
1. Iguala-se a expressão ax + b a zero;
2. Localiza-se a raiz no eixo x;
3. Estuda-se o sinal conforme o caso.
Exemplo 1:
-2x + 7 > 0
-2x + 7 = 0
x = 7/2
Explicação passo-a-passo:
✌ espero ter ajudado
Resposta:
2x+5<-3x+40
2x+3x < 40-5
5x < 35
x < 7
{ x∈n/ 0 ≤ x < 7 }
Explicação passo-a-passo: