Resolva os problemas:
Derive implicitamente :
.
Use a regra de L'Hospital e calcule o limite:
Soluções para a tarefa
Respondido por
0
a)
![y^3+y=x\\\\ \frac{d}{dx} (y^3+y) = \frac{d}{dx} (x)\\\\ \frac{d}{dx}(y^3) + \frac{d}{dx}(y) = \frac{d}{dx}(x)\\\\ 3y^2 \frac{dy}{dx} + \frac{dy}{dx}= \frac{dx}{dx}\\\\ 3y^2 \frac{dy}{dx}+\frac{dy}{dx} =1\\\\ \frac{dy}{dx}(3y^2+1)=1\\\\ \frac{dy}{dx}= \frac{1}{3y^2+1} y^3+y=x\\\\ \frac{d}{dx} (y^3+y) = \frac{d}{dx} (x)\\\\ \frac{d}{dx}(y^3) + \frac{d}{dx}(y) = \frac{d}{dx}(x)\\\\ 3y^2 \frac{dy}{dx} + \frac{dy}{dx}= \frac{dx}{dx}\\\\ 3y^2 \frac{dy}{dx}+\frac{dy}{dx} =1\\\\ \frac{dy}{dx}(3y^2+1)=1\\\\ \frac{dy}{dx}= \frac{1}{3y^2+1}](https://tex.z-dn.net/?f=y%5E3%2By%3Dx%5C%5C%5C%5C++%5Cfrac%7Bd%7D%7Bdx%7D+%28y%5E3%2By%29+%3D+%5Cfrac%7Bd%7D%7Bdx%7D+%28x%29%5C%5C%5C%5C+%5Cfrac%7Bd%7D%7Bdx%7D%28y%5E3%29+%2B+%5Cfrac%7Bd%7D%7Bdx%7D%28y%29+%3D+%5Cfrac%7Bd%7D%7Bdx%7D%28x%29%5C%5C%5C%5C+3y%5E2+%5Cfrac%7Bdy%7D%7Bdx%7D+%2B+%5Cfrac%7Bdy%7D%7Bdx%7D%3D+%5Cfrac%7Bdx%7D%7Bdx%7D%5C%5C%5C%5C+3y%5E2+%5Cfrac%7Bdy%7D%7Bdx%7D%2B%5Cfrac%7Bdy%7D%7Bdx%7D+%3D1%5C%5C%5C%5C+%5Cfrac%7Bdy%7D%7Bdx%7D%283y%5E2%2B1%29%3D1%5C%5C%5C%5C+%5Cfrac%7Bdy%7D%7Bdx%7D%3D+%5Cfrac%7B1%7D%7B3y%5E2%2B1%7D+)
b)
![\lim_{x\to +\infty} \frac{e^{x} }{x} = \lim_{x\to +\infty} \frac{(e^{x})' }{(x)'} = \lim_{x\to +\infty} \frac{e^{x} }{1} = \lim_{x\to +\infty} e^{x} = e^{\infty} = \infty \lim_{x\to +\infty} \frac{e^{x} }{x} = \lim_{x\to +\infty} \frac{(e^{x})' }{(x)'} = \lim_{x\to +\infty} \frac{e^{x} }{1} = \lim_{x\to +\infty} e^{x} = e^{\infty} = \infty](https://tex.z-dn.net/?f=+%5Clim_%7Bx%5Cto+%2B%5Cinfty%7D+++%5Cfrac%7Be%5E%7Bx%7D+%7D%7Bx%7D+%3D+%5Clim_%7Bx%5Cto+%2B%5Cinfty%7D+++%5Cfrac%7B%28e%5E%7Bx%7D%29%27+%7D%7B%28x%29%27%7D++%3D++%5Clim_%7Bx%5Cto+%2B%5Cinfty%7D+++%5Cfrac%7Be%5E%7Bx%7D+%7D%7B1%7D++%3D++%5Clim_%7Bx%5Cto+%2B%5Cinfty%7D+++e%5E%7Bx%7D+%3D+e%5E%7B%5Cinfty%7D+%3D+%5Cinfty)
b)
Perguntas interessantes
Matemática,
11 meses atrás
Geografia,
11 meses atrás
Geografia,
11 meses atrás
Física,
1 ano atrás
Física,
1 ano atrás