Matemática, perguntado por Biancaramosmf, 1 ano atrás

Resolva as seguintes racionalizações:

a) ∛6\⁴√12
b) √25\∛125
c) ⁴√81.625


Lukyo: A letra c é 81 * 125 (multiplicando??)
Biancaramosmf: Sim

Soluções para a tarefa

Respondido por Lukyo
1
Para racionalizar expressões envolvendo raízes com índices diferentes, eu prefiro trabalhar com expoentes fracionários:


a) \mathsf{\dfrac{\,^3\!\!\!\sqrt{6}}{\,^4\!\!\!\sqrt{12}}}

\mathsf{=\dfrac{6^{1/3}}{12^{1/4}}}


Reduzindo os expoentes ao mesmo denominador comum:

\mathsf{=\dfrac{6^{4/12}}{12^{3/12}}}

Multiplicando o numerador e o denominador por \mathsf{12^{9/12}:}

\mathsf{=\dfrac{6^{4/12}\cdot 12^{9/12}}{12^{3/12}\cdot 12^{9/12}}}\\\\\\ \mathsf{=\dfrac{(6^{4}\cdot 12^{9})^{1/12}}{12^{(3/12)+(9/12)}}}\\\\\\ \mathsf{=\dfrac{[6^{4}\cdot (2\cdot 6)^{9}]^{1/12}}{12}}\\\\\\ \mathsf{=\dfrac{[6^{4}\cdot 2^{9}\cdot 6^{9}]^{1/12}}{12}}\\\\\\ \mathsf{=\dfrac{[6^{4+9}\cdot 2^{9}]^{1/12}}{12}}\\\\\\ \mathsf{=\dfrac{[6^{13}\cdot 2^{9}]^{1/12}}{12}}\\\\\\ \mathsf{=\dfrac{[6^{12+1}\cdot 2^{9}]^{1/12}}{12}}\\\\\\ \mathsf{=\dfrac{[6^{12}\cdot (6\cdot 2^{9})]^{1/12}}{12}}

\mathsf{=\dfrac{\,^{12}\!\!\!\!\sqrt{6^{12}\cdot (6\cdot 2^{9})}}{12}}\\\\\\ \mathsf{=\dfrac{\,^{12}\!\!\!\!\sqrt{6^{12}}\cdot \,^{12}\!\!\!\!\sqrt{6\cdot 2^{9}}}{12}}\\\\\\ \mathsf{=\dfrac{6\cdot \,^{12}\!\!\!\!\sqrt{2\cdot 3\cdot 2^{9}}}{12}}\\\\\\ \mathsf{=\dfrac{\diagup\!\!\!\! 6\,^{12}\!\!\!\!\sqrt{2^{1+9}\cdot 3}}{\diagup\!\!\!\! 6\cdot 2}}\\\\\\ \mathsf{=\dfrac{\,^{12}\!\!\!\!\sqrt{2^{10}\cdot 3}}{2}}


ou caso queira desenvolver as potências,

\mathsf{=\dfrac{\,^{12}\!\!\!\!\sqrt{3\,072}}{2}}

_______________________

b) \mathsf{\dfrac{\sqrt{25}}{\,^{3}\!\!\!\sqrt{125}}}

\mathsf{=\dfrac{\sqrt{5^{2}}}{\,^{3}\!\!\!\sqrt{5^{3}}}}\\\\\\ \mathsf{=\dfrac{5}{5}}\\\\\\ \mathsf{=1}

_______________________

c) \mathsf{\,^4\!\!\!\sqrt{81\cdot 125}}

\mathsf{=\,^4\!\!\!\sqrt{3^{4}\cdot 5^{4}}}\\\\ \mathsf{=\,^4\!\!\!\!\sqrt{(3\cdot 5)^{4}}}\\\\ \mathsf{=3\cdot 5}\\\\ \mathsf{=15}

Perguntas interessantes