Matemática, perguntado por tacyvalenga, 1 ano atrás

resolva as seguintes inequações​

Anexos:

Soluções para a tarefa

Respondido por Usuário anônimo
0

Resposta:

a)

Vamos separar:

 {2}^{x - 3}  \geqslant  \frac{1}{4}

 {2}^{x - 3}  \leqslant  \frac{1}{2}

Primeira:

x - 3 \geqslant 2

x \geqslant 1

Segunda:

x - 3 \leqslant  - 1

x \leqslant 2

x ∈ [  1, \: 2]

b)

 {e}^{x}  >  {e}^{ - x + 5}

2x >  5

x >  \frac{5}{2}

c)

 {2}^{2x}  -  \frac{9}{4}  {2}^{x} +  \frac{1}{2}  = 0

 {2}^{x}  =  \frac{1}{4} U {2}^{x}  = 2

x =  - 2Ux = 1

 - 2 < x < 1

d)

 {3}^{2x}  - 12 \times {3}^{x}  + 27 = 0

 {3}^{x}  = 3U {3}^{x}  = 9

x = 1Ux = 2

x < 1Ux > 2

e)

 {e}^{2x}  - (e + 1) {e}^{x}  + e = 0

 {e}^{x}  = 1U {e}^{x}  = e

x = 0 \: Ux = 1

0 < x < 1

Perguntas interessantes