Matemática, perguntado por duducostta, 1 ano atrás

Resolva as integrais indefinidas:

l)∫xdx/√1-x²

Soluções para a tarefa

Respondido por andresccp
1
\int  \frac{x}{\sqrt{1-x^2}} \; dx

Substituição
\boxed{\boxed{u = 1-x^2}}\\\\  \frac{du}{dx}=   -2x\\\\\boxed{\boxed{dx = \frac{du}{-2x}}}

substituindo na integral
\int  \frac{x}{\sqrt{u} }* \frac{du}{-2x}  \\\\ = - \frac{1}{2} \int  \frac{\not x}{\sqrt{u} }* \frac{du}{-2 \not x}  \\\\ = - \frac{1}{2} \int  \frac{1}{\sqrt{u}} \;du \\\\\  = - \frac{1}{2} \int u^{- \frac{1}{2} } \;du =\frac{-1}{2}  \left [  \frac{u^{\frac{-1}{2}+1 }}{\frac{-1}{2} +1} +C \right] =  \frac{-1}{2}\left[ \frac{u^{ \frac{1}{2} }}{ \frac{1}{2} } +C\right]  = \frac{-1}{2}\left[ 2\sqrt{u}+C\right] \\\\ \boxed{\boxed{=-\sqrt{1-x^2}+C}}
Perguntas interessantes