Matemática, perguntado por hellenfragoso, 1 ano atrás

resolva as equaçoes
a)x(x-2)=2x+5=

b)x²-15=1

c)y³+2=10

d)k²+5k=0

e)w²+8w=3w

f)2x²=-12x-18

g) 3x²+5x=-x-9+2x²

h)4+x(x-4)=x

i)(x+3)²=1

j) (2x-4)²=0

Soluções para a tarefa

Respondido por emicosonia
0
Resolva as equaçoes 
a)x(x-2)=2x+5=

x(x - 2) = 2x + 5
x²  - 2x = 2x + 5   ( igualar a zero) atenção no sinal
x² - 2x - 2x - 5 = 0
x² - 4x - 5 = 0 
a = 1
b = - 4
c = - 5
Δ =  b² - 4ac
Δ = (-4)² - 4(1)(-5)
Δ = + 16 + 20
Δ = + 36 ---------------> √Δ = 6   ( porque √36 = 6)
se
Δ > 0 ( duas raizes diferentes)
(baskara)
         - b + - √Δ
x = -----------------   
              2a

x' = - (-4) - 
√36/2(1)
x' = + 4 - 6/2
x' =- 2/2
x'  = - 1
e
x" = -(-4) + √36/2(1)
x" = + 4 + 6/2
x" = + 10/2
x" = 5


b)x²-15=1

x² - 15 = 1
x² = 1 + 15
x² = 16
x = + - 
√16                    (√16 = 4)
x= + - 4

assim
x' = - 4
x" = 4


c)y³+2=10 

y³ + 2 = 10
y³ = 10 - 2
y³ = 8      
y = 
∛8
                    ( 8 = 2x2x2 = 2³)
y = 
∛2³   elimina a ∛(raiz cubica) com o (³)  fica
y = 2


d)k²+5k=0

k² + 5k = 0
k(k + 5) = 0

k = 0
e
(k + 5) = 0
k + 5 = 0
k = - 5
assim
k' = 0
k" = - 5


e)w²+8w=3w

w² + 8w = 3w
w² + 8w - 3w = 0
w² + 5w = 0
w(w + 5) = 0

w = 0
e
(w + 5) = 0
w + 5 = 0
w = - 5

assim
w' = 0
w'' = - 5
 

f)2x²=-12x-18

2x² = -12x - 18   olha o sinal
2x² + 12x + 18 = 0
a = 2
b = 12
c = 18
Δ = b² - 4ac
Δ = (12)² - 4(2)(18)
Δ = + 144 - 144
Δ = 0
se
Δ = 0  ( unica raiz)
x = - b/2a
x = - 12/2(2)
x = - 12/4
x = - 3
 

g) 3x²+5x=-x-9+2x²

3x² + 5x = - x - 9 + 2x²   iguala a zero (sinal)
3x² + 5x + x + 9 - 2x²  = 0 junta iguais
3x² - 2x² + 5x + x + 9 = 0
x² + 6x + 9 = 0
a = 1
b = 6
c = 9
Δ = b² - 4ac
Δ = (6)² - 4(1)(9)
Δ = + 36 - 36
Δ = 0
se
Δ = 0 ( unica raiz)
x = - b/2a
x = - 6/2(1)
x = - 6/2
x = - 3
  

h)4+x(x-4)=x

4 + x(x - 4) = x
4 + x² - 4x = x   igualar a zero (sinal)
4 + x² - 4x - x = 0
4 + x² - 5x = 0   arruma a casa
x² - 5x + 4 = 0
a = 1
b = - 5
c = 4
Δ = b² - 4ac
Δ = (-5)² - 4(1)(4)
Δ = + 25 - 16
Δ = + 9 ---------------------> √Δ = 3  ( porque √9 = 3)
se
Δ > 0 ( DUAS raizes diferentes)
(baskara)
       -b + - 
√Δ
x = ---------------   
            2a

x' = -(-5) - 
√9/2(1)
x' = + 5 - 3/2
x' = + 2/2
x' = 1
e
x" = -(-5) + 
√9/2(1)
x" = + 5 + 3/2
x" = + 8/2
x" = 4

i)(x+3)²=1

(x + 3)² = 1
(x + 3)(x + 3) = 1
x² + 3x + 3x + 9 = 1
x² + 6x + 9 = 1
x² + 6x + 9 - 1 = 0
x² + 6x + 8 = 0
a = 1
b = 6
c  =8
Δ = b² - 4ac
Δ = (6)² - 4(1)(8)
Δ = + 36 - 32
  Δ = +4 ---------------------> √Δ = 2  ( porque √4 = 2)
se
Δ > 0 ( DUAS raizes diferentes)
(baskara)
       -b + - √Δ
x = ---------------   
            2a

x' = - 6 - 
√4/2(1)
x' = - 6 - 2/2
x' = - 8/2
x' = -= 4
e
x" = - 6 + 
√4/2(1)
x" = - 6 + 2 
x" = - 4/2
x" = - 2



j) (2x-4)²=0

(2x - 4)(2x - 4) = 0
4x² - 8x - 8x + 16 = 0
4x² - 16x + 16 = 0
a = 4
b = - 16
c = 16
Δ = b² - 4ac
Δ = (-16)² - 4(4)(16)
Δ = 256 - 256
Δ = 0
se
Δ = 0  ( única raiz)
x = - b/2a 
x = - (-16)/2(4)
x = + 16/8
x =  2
Perguntas interessantes