Matemática, perguntado por slsleliieuud, 6 meses atrás

Resolva as as equações de 1º grau
a)5x= 8x + 3
b)5(x+ 2)= 2(3 +x)
c)3x/2 = 6
d)x5+8=10
e)5X-2=3(X+4)
f)3x+6=4x+2 ​


slsleliieuud: me ajudem

Soluções para a tarefa

Respondido por QueenEvan
3

Calculando, iremos obter:

\boxed{\boxed{\begin{array}{lr}\boldsymbol{a) - 1}\end{array}}}\boxed{\boxed{\begin{array}{lr}\boldsymbol{b) - 1.3}\end{array}}}\boxed{\boxed{\begin{array}{lr}\boldsymbol{c)4}\end{array}}} \\ \boxed{\boxed{\begin{array}{lr}\boldsymbol{d) \: 0.4}\end{array}}}\boxed{\boxed{\begin{array}{lr}\boldsymbol{e) \: 7}\end{array}}} \\ \boxed{\boxed{\begin{array}{lr}\boldsymbol{f) \: 4}\end{array}}}

\overline{\underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:\:\:  \:  \:  \:  \:   \:  \:  \:  \:   \: \begin{Vmatrix}< \heartsuit >\end{Vmatrix} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \: \:}}

Para obtermos os resultados das equações do 1° Grau, temos de mover a variável, somar os opostos... colocar os termos similares em evidência, logo, somar/subtrair os coeficientes, e por fim, dividir.

Resolva as as equações de 1º grau.

  • A) 5x= 8x + 3:

\boxed{\boxed{\begin{array}{lr}\boldsymbol{5x = 8x + 3} \\\boldsymbol{5x - 8x = 3} \\ \boldsymbol{ \:  \:  \:  - 3x = 3}  \\ \boldsymbol{ \:  \:  \:  \:   \: x =  - 1}\end{array}}}

  • B) 5(x+ 2)= 2(3 +x):

\boxed{\boxed{\begin{array}{lr}\boldsymbol{5(x + 2) = 2(3 + x)} \\ \boldsymbol{5x + 10 = 2(3 + x)} \\ \boldsymbol{5x + 10 = 6 + 2x} \\ \boldsymbol{5x + 10 - 2x = 6} \\ \boldsymbol{5x - 2x = 6 - 10} \\ \boldsymbol{3x = 6 - 10} \\\boldsymbol{3x =  - 4}  \\\boldsymbol{x =  - 1.3} \end{array}}}

  • C) 3x/2 = 6:

\boxed{\boxed{\begin{array}{lr}\boldsymbol{  \:  \:  \:  \:  \:  \:  \:  \: \frac{3x}{2}  = 6} \\ \\  \boldsymbol{ \frac{2}{3} \times  \frac{3x}{2}  =  \frac{2}{3}  \times 6 } \\  \\\boldsymbol{ \frac{1}{3} \times 3x =  \frac{2}{3}  \times 6 }  \\  \\\boldsymbol{ \:  \:  \:  \:  \: x =  \frac{2}{3}  \times 6} \\  \\\boldsymbol{ \:  \:  \:  \:  \: x = 2 \times 2}  \\  \\\boldsymbol{ \:  \:  \:  \:  \:  \:  \:  \:  \: x = 4}  \end{array}}}

  • D) x5+8=10:

\boxed{\boxed{\begin{array}{lr}\boldsymbol{x5 + 8 = 10} \\\boldsymbol{5x + 8 = 10}  \\\boldsymbol{5x = 10 - 8} \\\boldsymbol{5x = 2}  \\\boldsymbol{x = 0.4}  \end{array}}}

  • E) 5x-2=3(x+4):

\boxed{\boxed{\begin{array}{lr}\boldsymbol{5x - 2 = 3(x + 4)} \\ \boldsymbol{5x - 2 = 3x + 12} \\ \boldsymbol{5x - 2 - 3x = 12} \\ \boldsymbol{5x - 3x = 12 + 2} \\ \boldsymbol{2x = 12 + 2} \\\boldsymbol{2x = 14} \\\boldsymbol{x = 7}  \end{array}}}

  • F) 3x+6=4x+2:

\boxed{\boxed{\begin{array}{lr}\boldsymbol{3x + 6 = 4x + 2} \\ \boldsymbol{3x + 6 - 4x = 2} \\ \boldsymbol{3x - 4x = 2 - 6} \\ \boldsymbol{ - x = 2 - 6} \\\boldsymbol{ - x =  - 4} \\ \boldsymbol{x = 4} \end{array}}}

\green{\begin{array}{lr} ............................................................ \end{array}}

Caso queira aprender mais:

  • https://brainly.com.br/tarefa/49401070
  • https://brainly.com.br/tarefa/49420428

\green{\begin{array}{lr} ............................................................ \end{array}}

\mathbf{\diagdown\!\!\!\! B\diagdown\!\!\!\! y:\diagdown\!\!\!\!L\diagdown\!\!\!\!o\diagdown\!\!\!\!h\diagdown\!\!\!\!a\diagdown\!\!\!\!n\diagdown\!\!\!\!y \: \diagdown\!\!\!\!E\diagdown\!\!\!\! v\diagdown\!\!\!\! a\diagdown\!\!\!\! n \: \maltese}

Anexos:
Perguntas interessantes