Matemática, perguntado por daffdhhghfgf133, 1 ano atrás

Resolva a integral: integral (x^3 + 2/raiz de X )^2 dx

Soluções para a tarefa

Respondido por avengercrawl
1
Olá

\displaystyle  \int ( \frac{x^3+2}{ \sqrt{x} } )^2dx \\  \\  \\ u=x^3 \\ du=3x^2dx \\  \\dx=  \frac{du}{3x^2}           ~~~~ ~~ \longrightarrow~ ~~dx= \frac{1}{3x^2} du \\  \\ \text{substituindo na integral} \\  \\ \displaystyle  \int ( \frac{u+2}{ \sqrt{x} } )^2~ \frac{1}{3x^2} du \\  \\  \\ \text{cancela a raiz quadrada do denominador com o expoente} \\  \\  \\ \displaystyle  \int  \frac{(u+2)^2}{ x } \cdot\frac{1}{3x^2}du   \\  \\  \\ \displaystyle  \int  \frac{(u+2)^2}{ x\cdot3x^2 } du

\displaystyle  \int  \frac{(u+2)^2}{ 3x^3 } du \\   \\ \\  \frac{1}{3} \displaystyle  \int  \frac{(u+2)^2}{ x^3 } du \\  \\  \\ \text{temos que}~x^3~\text{ e "u", entao substituindo} \\  \\  \\ \frac{1}{3} \displaystyle  \int  \frac{(u+2)^2}{ u } du \\  \\  \\ \text{expande o termo}~(u+2)^2 \\  \\ (u+2)^2=u^2+4u+u \\  \\  \\ \frac{1}{3} \displaystyle  \int  \frac{u^2+4u+4}{ u } du

\text{Separando e fazendo as devidas simplificacoes} \\  \\ \frac{1}{3}( \displaystyle  \int  \frac{u^\diagup\!\!\!\!^2}{ \diagup\!\!\!\!\!u } du~~+~~\int \frac{4\diagup\!\!\!\!u}{\diagup\!\!\!\!u}du ~+~\int \frac{4}{u}du ) \\  \\  \\  \frac{1}{3} (\displaystyle  \int  udu~~+~~\int 4du~~+~~\int \frac{4}{u} du) \\  \\  \\  \frac{1}{3}~( \frac{u^2}{2} ~+~ 4u~+~4ln|u|} )  \\  \\  \\ \text{substituindo o "u" de volta por}~x^3 \\  \\  \\  \frac{1}{3}~( \frac{(x^3)^2}{2} ~+~ 4x^3~+~4ln|x^3|} )

\text{Pelas propriedade do logaritmo natural} \\  \\ ln(a^b)=b\cdot ln(a)

\displaystyle \frac{1}{3}~( \frac{x^6}{2} ~+~ 4x^3~+~3\cdot4ln|x|} )  \\  \\  \\\boxed{\boxed{  \frac{1}{3}~( \frac{x^6}{2} ~+~ 4x^3~+~12ln|x| )+C}}






https://brainly.com.br/tarefa/8226758

daffdhhghfgf133: A raiz fica de baixo do 2 .
Perguntas interessantes