resolva a integral indefinida, só tem UMA
∫
Soluções para a tarefa
Resposta:
x³+x+1 | x²-4x+3
| x +4
-x³+4x²-3x
=4x²-2x+1
-4x²+16x-12
=+14x-11
x³+x+1 =(x+4) * (x²-4x+3) +14x-11
_____________________________________
∫ (x³+x+1)/(x²-4x+3) dx
∫ [(x+4) * (x²-4x+3) +14x-11] (x²-4x+3) dx
∫ (x+4)+( 14x-11)/(x²-4x+3) dx
x²/2+4x + ∫( 14x-11)/(x²-4x+3) dx
_______________________________
∫( 14x-11)/(x²-4x+3) dx
∫( 14x-11 -17 + 17)/(x²-4x+3) dx
∫( 14x-28 + 17)/(x²-4x+3) dx
∫( 14x-28)/(x²-4x+3) dx + 17/(x²-4x+3) dx
∫( 14x-28)/(x²-4x+3) dx + 17/(x-1)(x-3) dx
∫ 7( 2x-4)/(x²-4x+3) dx +∫ 17/(x-1)(x-3) dx
7*∫ ( 2x-4)/(x²-4x+3) dx + 17∫ 1/(x-1)(x-3) dx
∫ ( 2x-4)/(x²-4x+3) dx
u=x²-4x ==>du =(2x-4 ) dx
∫ ( 2x-4)/u du/(2x-4)
∫1/u du =ln (|u|
como u =x²-4x
∫ ( 2x-4)/(x²-4x+3) dx =ln|x²-4x| <<<<<<<<
∫ 1/(x-1)(x-3) dx
1/(x-1)(x-3) = A/(x-1)+B/(x-3)
1= A*(x-3)+B*(x-1)
1=x*(A+B) -3A-B
A+B=0 ==>A=-B
-3A-B=1 ==>-3A+A=1 ==> A=-1/2
∫ 1/(x-1)(x-3) dx = -1/2∫ 1/(x-1) dx+1/2∫ 1/(x-3) dx
=(-1/2)*ln |x-1| +(1/2)* ln|x-3| <<<<<<<<<<<<<<<<
_____________________________
∫ (x³+x+1)/(x²-4x+3) dx