Resolva essa integral indefinida, só tem UMA
∫
Soluções para a tarefa
Resposta:
∫ (x^4 +x+1)/(x³+x) dx
________________________________
x^4 +x+1
=x^4 +x+1 +2x²-2x²
=x^4 +2x²+1 +x-2x²
=(x²+1)² +x-2x²
________________________________
∫ ((x²+1)² +x-2x²)/(x³+x) dx
∫ ((x²+1)² +x-2x²)/x(x²+1) dx
∫(x²+1)²/x(x²+1) +(x-2x²)/x(x²+1) dx
∫(x²+1)/x +(1-2x)/(x²+1) dx
∫x + 1/x +(1-2x)/(x²+1) dx
∫ x + 1/x + 1/(x²+1) -2x/(x²+1) dx
∫ x dx +∫ 1/x +∫ 1/(x²+1) dx - 2 ∫ x/(x²+1) dx
=x²/2 +ln|x| + ∫ 1/(x²+1) dx - 2 ∫ x/(x²+1) dx
_________________________________________
∫ 1/(x²+1) dx
Fazendo x=tan(Θ) ==>dx= sec²(Θ) dΘ
∫ [ 1/(tan²(Θ) +1)] sec²(Θ) dΘ
∫ [ 1/(sen²(Θ)/cos²(Θ)+1)] sec²(Θ) dΘ
∫ [ 1/(sen²(Θ)/cos²(Θ)+cos²(Θ)/cos²(Θ))] sec²(Θ) dΘ
∫ [ 1/(sen²(Θ)+cos²(Θ)/cos²(Θ))] sec²(Θ) dΘ
∫ [ 1/(1/cos²(Θ)] sec²(Θ) dΘ
∫ [ 1/(sec²(Θ)] sec²(Θ) dΘ
∫ dΘ = Θ + c
como x=tan(Θ) ==> Θ =arctan(x)
∫ 1/(x²+1) dx =arctan(x) + c
__________________________________________
∫ x/(x²+1) dx
u=x²+1 ==>du=2x dx
∫ x/u du/2x = (1/2) ∫ 1/u du =(1/2)* ln|u| + c
Como u = x²+1
∫ x/(x²+1) dx =(1/2)* ln|x²+1| + c
_________________________________________
∫ (x^4 +x+1)/(x³+x) dx
=x²/2 +ln|x| +arctan(x) - 2 ((1/2)* ln|x²+1| ) +c
=x²/2 +ln|x| +arctan(x) - ln|x²+1| + c