Resolva a inequação sin2x⩾14 com 0⩽x⩽2π. (sugestão: faça t=sinx e resolva t2⩾14)
Soluções para a tarefa
Respondido por
1
Olá
Temos que
Fazendo sen(x) = t, como a sugestão pede, temos que:
ou seja,
ou
Como sen(x) = t, então,
⇒
pois o seno é igual a 0,5, no intervalo [0,2π], quando o ângulo é igual a 60° e 150°.
Da mesma forma,
⇒
pois o seno é igual -0,5, no intervalo [0,2π], quando o ângulo é igual a 210° ou 330°
Logo, a solução será:
Temos que
Fazendo sen(x) = t, como a sugestão pede, temos que:
ou seja,
ou
Como sen(x) = t, então,
⇒
pois o seno é igual a 0,5, no intervalo [0,2π], quando o ângulo é igual a 60° e 150°.
Da mesma forma,
⇒
pois o seno é igual -0,5, no intervalo [0,2π], quando o ângulo é igual a 210° ou 330°
Logo, a solução será:
MFDT:
Obrigada!
Perguntas interessantes
Matemática,
9 meses atrás
Biologia,
9 meses atrás
Física,
9 meses atrás
Matemática,
1 ano atrás
História,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás