Matemática, perguntado por Elidakassia, 1 ano atrás


Resolva a equação biquadrada x4 -10x2 + 9 = 0

Soluções para a tarefa

Respondido por solkarped
7

✅ Após resolver os cálculos, concluímos que o conjunto solução da referida equação biquadrada é:

  \Large\displaystyle\text{$\begin{gathered}\boxed{\boxed{\:\:\:\bf S = \{-3,\,-1,\,1,\,3\}\:\:\:}}\end{gathered}$}

Seja a equação biquadrada:

        \Large\displaystyle\text{$\begin{gathered} x^{4} - 10x^{2} + 9 = 0\end{gathered}$}

Sabemos que esta equação foi gerada a partir da seguinte função biquadrada:

     \Large\displaystyle\text{$\begin{gathered} f(x) = x^{4} - 10x^{2} + 9\end{gathered}$}

Cujos coeficientes são:

                 \Large\begin{cases} a = 1\\b = -10\\c = 9\end{cases}

Para calcular as raízes da função biquadrada devemos fazer:

    \Large\displaystyle\text{$\begin{gathered} x = \pm\sqrt{\frac{-b\pm\sqrt{b^{2} - 4ac}}{2a}}\end{gathered}$}

         \Large\displaystyle\text{$\begin{gathered} = \pm\sqrt{\frac{-(-10)\pm\sqrt{(-10)^{2} - 4\cdot1\cdot9}}{2\cdot1}}\end{gathered}$}

         \Large\displaystyle\text{$\begin{gathered} = \pm\sqrt{\frac{10\pm\sqrt{100 - 36}}{2}}\end{gathered}$}

         \Large\displaystyle\text{$\begin{gathered} = \pm\sqrt{\frac{10\pm\sqrt{64}}{2}}\end{gathered}$}

         \Large\displaystyle\text{$\begin{gathered} = \pm\sqrt{\frac{10\pm8}{2}}\end{gathered}$}

Encontrando as raízes, temos:

   \LARGE\begin{cases} x' = -\sqrt{\frac{10 + 8}{2}} = -\sqrt{\frac{18}{2}} = -\sqrt{9} = -3\\x'' = -\sqrt{\frac{10 - 8}{2}} = -\sqrt{\frac{2}{2}} = -\sqrt{1} = -1\\x''' = \sqrt{\frac{10 - 8}{2}} = \sqrt{\frac{2}{2}} = \sqrt{1} = 1\\x'''' = \sqrt{\frac{10 + 8}{2}} = \sqrt{\frac{18}{2}} = \sqrt{9} = 3\end{cases}

✅ Portanto, o conjunto solução desta função é:

     \Large\displaystyle\text{$\begin{gathered} S = \{-3,\,-1,\,1,\,3\}\end{gathered}$}

\LARGE\displaystyle\text{$\begin{gathered} \underline{\boxed{\boldsymbol{\:\:\:Bons \:estudos!!\:\:\:Boa\: sorte!!\:\:\:}}}\end{gathered}$}

Saiba mais:

  1. https://brainly.com.br/tarefa/7903895
  2. https://brainly.com.br/tarefa/52932916
  3. https://brainly.com.br/tarefa/32169359
  4. https://brainly.com.br/tarefa/15250238
  5. https://brainly.com.br/tarefa/32218017
  6. https://brainly.com.br/tarefa/6340792
  7. https://brainly.com.br/tarefa/6165799

\Large\displaystyle\text{$\begin{gathered} \underline{\boxed{\boldsymbol{\:\:\:Observe \:o\:Gr\acute{a}fico!!\:\:\:}}}\end{gathered}$}

Anexos:
Respondido por Math739
1

Resposta:

\textsf{Leia abaixo}

Explicação passo-a-passo:

 \mathsf{ x^4-10x^2+9=0}

 \mathsf{ a=1\quad b=-10\quad c=9}

 \mathsf{\Delta=b^2-4\cdot a\cdot c }

 \mathsf{\Delta=(-10)^2-4\cdot 1\cdot9 }

 \mathsf{ \Delta=100-36 }

 \mathsf{\Delta=64 }

 \mathsf{ x=\pm\sqrt{\dfrac{-b\pm\sqrt\Delta}{2\cdot a}}}

 \mathsf{x=\pm\sqrt{\dfrac{-(-10)\pm\sqrt{64}}{2\cdot 1} }}

 \mathsf{ x=\pm\sqrt{\dfrac{10\pm8}{2}}\begin{cases}\sf x_1=+\sqrt{\dfrac{10+8}{2}}=+\sqrt{9}=+3\\\\\sf x_2=-\sqrt{\dfrac{10+8}{2}}=-\sqrt9=-3\\\\\sf x_3=+\sqrt{\dfrac{10-8}{2}}=+\sqrt1=+1\\\\\sf x_4=-\sqrt{\dfrac{10-8}{2}}=-\sqrt1=-1\end{cases}}

\boxed{\boxed{ \mathsf{ V=\{-3;~-1;~+1;~+3\}}}}

Perguntas interessantes