Resolva a derivada por definição
Soluções para a tarefa
Respondido por
0
Seja
, pela definição temos que:
![\lim_{x\rightarrow\,p}\frac{f(x)-f(p)}{x-p}=f'(x)\\\\f'(x)=\lim_{x\rightarrow\,p}\frac{f(x)-f(p)}{x-p}\\\\f'(x)=\lim_{x\rightarrow\,p}\frac{x^{\frac{1}{3}}-p^{\frac{1}{3}}}{x-p}\\\\f'(x)=\lim_{x\rightarrow\,p}\frac{(x^{\frac{1}{3}}-p^{\frac{1}{3}})}{x-p}\cdot\frac{(x^{\frac{2}{3}}+x^{\frac{1}{3}}p^{\frac{1}{3}}+p^{\frac{2}{3}})}{(x^{\frac{2}{3}}+x^{\frac{1}{3}}p^{\frac{1}{3}}+p^{\frac{2}{3}})}\\\\f'(x)=\lim_{x\to\,p}\frac{x^1+x^{\frac{2}{3}}p^{\frac{1}{3}}+x^{\frac{1}{3}}p^{\frac{2}{3}}-p^{\frac{1}{3}}x^{\frac{2}{3}}-x^{\frac{1}{3}}p^{\frac{2}{3}}-p^1}{(x-p)(x^{\frac{2}{3}}+x^{\frac{1}{3}}p^{\frac{1}{3}}+p^{\frac{2}{3}})}\\\\f'(x)=\lim_{x\to\,p}\frac{x-p}{(x-p)(x^{\frac{2}{3}}+x^{\frac{1}{3}}p^{\frac{1}{3}}+p^{\frac{2}{3}})} \lim_{x\rightarrow\,p}\frac{f(x)-f(p)}{x-p}=f'(x)\\\\f'(x)=\lim_{x\rightarrow\,p}\frac{f(x)-f(p)}{x-p}\\\\f'(x)=\lim_{x\rightarrow\,p}\frac{x^{\frac{1}{3}}-p^{\frac{1}{3}}}{x-p}\\\\f'(x)=\lim_{x\rightarrow\,p}\frac{(x^{\frac{1}{3}}-p^{\frac{1}{3}})}{x-p}\cdot\frac{(x^{\frac{2}{3}}+x^{\frac{1}{3}}p^{\frac{1}{3}}+p^{\frac{2}{3}})}{(x^{\frac{2}{3}}+x^{\frac{1}{3}}p^{\frac{1}{3}}+p^{\frac{2}{3}})}\\\\f'(x)=\lim_{x\to\,p}\frac{x^1+x^{\frac{2}{3}}p^{\frac{1}{3}}+x^{\frac{1}{3}}p^{\frac{2}{3}}-p^{\frac{1}{3}}x^{\frac{2}{3}}-x^{\frac{1}{3}}p^{\frac{2}{3}}-p^1}{(x-p)(x^{\frac{2}{3}}+x^{\frac{1}{3}}p^{\frac{1}{3}}+p^{\frac{2}{3}})}\\\\f'(x)=\lim_{x\to\,p}\frac{x-p}{(x-p)(x^{\frac{2}{3}}+x^{\frac{1}{3}}p^{\frac{1}{3}}+p^{\frac{2}{3}})}](https://tex.z-dn.net/?f=%5Clim_%7Bx%5Crightarrow%5C%2Cp%7D%5Cfrac%7Bf%28x%29-f%28p%29%7D%7Bx-p%7D%3Df%27%28x%29%5C%5C%5C%5Cf%27%28x%29%3D%5Clim_%7Bx%5Crightarrow%5C%2Cp%7D%5Cfrac%7Bf%28x%29-f%28p%29%7D%7Bx-p%7D%5C%5C%5C%5Cf%27%28x%29%3D%5Clim_%7Bx%5Crightarrow%5C%2Cp%7D%5Cfrac%7Bx%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D-p%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%7D%7Bx-p%7D%5C%5C%5C%5Cf%27%28x%29%3D%5Clim_%7Bx%5Crightarrow%5C%2Cp%7D%5Cfrac%7B%28x%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D-p%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%29%7D%7Bx-p%7D%5Ccdot%5Cfrac%7B%28x%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%2Bx%5E%7B%5Cfrac%7B1%7D%7B3%7D%7Dp%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%2Bp%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%29%7D%7B%28x%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%2Bx%5E%7B%5Cfrac%7B1%7D%7B3%7D%7Dp%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%2Bp%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%29%7D%5C%5C%5C%5Cf%27%28x%29%3D%5Clim_%7Bx%5Cto%5C%2Cp%7D%5Cfrac%7Bx%5E1%2Bx%5E%7B%5Cfrac%7B2%7D%7B3%7D%7Dp%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%2Bx%5E%7B%5Cfrac%7B1%7D%7B3%7D%7Dp%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D-p%5E%7B%5Cfrac%7B1%7D%7B3%7D%7Dx%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D-x%5E%7B%5Cfrac%7B1%7D%7B3%7D%7Dp%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D-p%5E1%7D%7B%28x-p%29%28x%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%2Bx%5E%7B%5Cfrac%7B1%7D%7B3%7D%7Dp%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%2Bp%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%29%7D%5C%5C%5C%5Cf%27%28x%29%3D%5Clim_%7Bx%5Cto%5C%2Cp%7D%5Cfrac%7Bx-p%7D%7B%28x-p%29%28x%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%2Bx%5E%7B%5Cfrac%7B1%7D%7B3%7D%7Dp%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%2Bp%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%29%7D)
Perguntas interessantes
Geografia,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Português,
1 ano atrás
História,
1 ano atrás
Biologia,
1 ano atrás