Represente por meio de uma equação a reta que passa por esses dois pontos A (1,8) e B (4,2).
A) 2x + y + 10 = 0
B) 4x + 2y – 20 = 0
C) 4x - 2y – 20 = 0
D) 8x - 4y + 40 = 0
E) 2x + y – 10 = 0
Soluções para a tarefa
Resposta:
ALTERNATIVA E)
Explicação passo-a-passo:
Represente por meio de uma equação a reta que passa por esses dois pontos A (1,8) e B (4,2).A) 2x + y + 10 = 0
B) 4x + 2y – 20 = 0
C) 4x - 2y – 20 = 0
D) 8x - 4y + 40 = 0
E) 2x + y – 10 = 0
A equação da reta tem a forma ordinária
y = ax + b
a = coeficente angular = (y2 - y1)/(x2 - x1)
b = coeficiente linear (punto de corte eixo ordenadas)
Sua forma geral
ax + y + b = 0
Tomando
A(1, 8) e B(4, 2)
a = (2 - 8)/(4 - 1)
= - 6/3
a = - 2
Na forma ordinaria, tomando A(1, 8)
8 = - 2(1) + b
b = 10
y = - 2x + 10 ORDINÃRIA)
2x + y - 10 = 0 GERAL